Advertisement

Co-adsorption of O2 and C2H4 on a Free Gold Dimer Probed via Infrared Photodissociation Spectroscopy

  • Sandra M. LangEmail author
  • Thorsten M. Bernhardt
  • Joost M. Bakker
  • Bokwon Yoon
  • Uzi Landman
Focus: Honoring Helmut Schwarz's Election to the National Academy of Sciences: Research Article

Abstract

Infrared multiple photon dissociation (IR-MPD) spectroscopy in conjunction with density functional theory (DFT) calculations has been employed to study the activation of molecular oxygen and ethylene co-adsorbed on a free gold dimer cation Au2+. Both studied complexes, Au2O2(C2H4)+ and Au2O2(C2H4)2+, show distinct features of both intact O2 and ethylene co-adsorbed on the cluster. However, the ethylene C=C double bond is activated, increasing in length by up to 0.07 Å compared with the free molecule, and the red shift of the O–O vibration frequency increases with the number of adsorbed ethylene molecules, indicating a small but increasing activation of the O–O bond. The small O2 activation and the rather weak interaction between O2 and C2H4 are also reflected in the calculated electronic structure of the co-adsorption complexes which shows only a small occupation of the empty anti-bonding O2 2π*2p orbital as well as the localization of most of the Kohn–Sham orbitals on O2 and C2H4, respectively, with only limited mixing between O2 and C2H4 orbitals. The results are compared with theoretical studies on neutral AuxO2(C2H4) (x = 3, 5, 7, 9) complexes.

Keywords

Gold cluster Ethylene oxidation Vibrational spectroscopy Density functional theory calculations Gas phase reaction 

Notes

Acknowledgements

We gratefully acknowledge the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for the support of the FELIX Laboratory. The research leading to these results has received funding from LASERLAB-EUROPE (grant agreement no. 654148, European Union’s Horizon 2020 research and innovation programme). Computations were carried out at the Georgia Tech Center for Computational Materials Science, and B.Y. and U.L. were supported by the Air Force Office for Scientific Research (AFOSR) (grant number FA9550-15-1-0519). S.M.L. is grateful to the Alexander von Humboldt Foundation for a Feodor-Lynen Scholarship, which, together with the above AFOSR grant, supported S.M.L.’s 6-month stay at the Georgia Institute of Technology during the work on this study.

Supplementary material

13361_2019_2259_MOESM1_ESM.docx (841 kb)
ESM 1 (DOCX 841 kb)

References

  1. 1.
    Haruta, M.: Gold rush. Nature. 437, 1098–1099 (2005)CrossRefGoogle Scholar
  2. 2.
    Lloyd, L.: Handbook of Industrial Catalysts. Springer, New York, Dordrecht, Heidelberg, London (2011)CrossRefGoogle Scholar
  3. 3.
    Farrauto, W.J., Dorazio, L., Bartholomew, C.H.: Introduction to Catalysis and Industrial Catalytic Processes. John Wiley & Sons, Hoboken, New Jersey (2016)Google Scholar
  4. 4.
    Rase, H.F.: Handbook of Commercial Catalysts Heterogeneous Catalysts. CRC Press, Boca Raton (2000)Google Scholar
  5. 5.
    Bartholomew, C.H., Farrauto, R.J.: Fundamentals of Industrial Catalytic Processes, 2nd edn. John Wiley&Sons, Hoboken, NJ (2006)Google Scholar
  6. 6.
    Stegelmann, C., Schiødt, N.C., Campbell, C.T., Stoltze, P.: Microkinetic modeling of ethylene oxidation over silver. J. Catal. 221, 630–649 (2004)CrossRefGoogle Scholar
  7. 7.
    Ozbek, M.O., Onal, I., van Santen, R.A.: Effect of surface and oxygen coverage on ethylene epoxidation. Top. Catal. 55, 710–717 (2012)CrossRefGoogle Scholar
  8. 8.
    Ozbek, M.O., Onal, I., van Santen, R.A.: Why silver is the unique catalyst for ethylene epoxidation. J. Catal. 284, 230–235 (2011)CrossRefGoogle Scholar
  9. 9.
    Hayashi, T., Tanaka, K., Haruta, M.: Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178, 566–575 (1998)CrossRefGoogle Scholar
  10. 10.
    Lang, S.M., Bernhardt, T.M., Bakker, J.M., Yoon, B., Landman, U.: The interaction of ethylene with free gold cluster cations probed with infrared photodissociation spectroscopy. J. Phys. Condens. Matter. 30, 504001 (2018)CrossRefGoogle Scholar
  11. 11.
    Lyalin, A., Taketsugu, T.: Adsorption of ethylene on neutral, anionic, and cationic gold clusters. J. Phys. Chem. C. 114, 2484–2493 (2010)CrossRefGoogle Scholar
  12. 12.
    Kang, G.-J., Chen, Z.-X., Li, Z.: Theoretical studies of the interaction of ethylene and formaldehyde with gold clusters. J. Chem. Phys. 131, 034710 (2009)CrossRefGoogle Scholar
  13. 13.
    Zhao, S.Z., Li, G.Z., Liu, J.N., Ren, Y.L., Lu, W.W., Wang, J.J.: Densitiy functional study of ethylene adsorption on small gold, palladium and gold-palladium binary clusters. Eur. Phys. J. D. 68, 254 (2014)CrossRefGoogle Scholar
  14. 14.
    Pichugina, D.A., Lanin, S.N., Kovaleva, N.V., Lanina, K.S., Shestakov, A.F., Kuzmenko, N.E.: Effect of the structure and charge of Au10 clusters on adsorption of hydrocarbons. Russ. Chem. Bul. 59, 2039–2046 (2010)CrossRefGoogle Scholar
  15. 15.
    Pichugina, D.A., Nikolaev, S.A., Mukhamedzyanova, D.F., Kuzmenko, N.E.: Quantum-chemical modeling of ethylene and acetylene adsorption on gold clusters. Russ. J. Phys. Chem. A. 88, 959–964 (2014)CrossRefGoogle Scholar
  16. 16.
    Tsipis, A.C.: Unveiling the nature of binding interactions of acetylene and ethylene with triangular coinage metal clusters: a DFT computational study. Organometallics. 29, 354–363 (2010)CrossRefGoogle Scholar
  17. 17.
    Sanchez, A., Abbet, S., Heiz, U., Schneider, W.-D., Häkkinen, H., Barnett, R.N., Landman, U.: When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A. 103, 9573–9578 (1999)CrossRefGoogle Scholar
  18. 18.
    Socaciu, L.D., Hagen, J., Bernhardt, T.M., Wöste, L., Heiz, U., Häkkinen, H., Landman, U.: Catalytic CO oxidation by free Au2 : experiment and theory. J. Am. Chem. Soc. 125, 10437–10445 (2003)CrossRefGoogle Scholar
  19. 19.
    Häkkinen, H., Landman, U.: Gas-phase catalytic oxidation of CO by Au2 . J. Am. Chem. Soc. 123, 9704–9705 (2001)CrossRefGoogle Scholar
  20. 20.
    Lang, S.M., Bernhardt, T.M., Barnett, R.N., Landman, U.: Temperature-tunable selective catalytic oxidation of methane on free Au2 +: formaldehyde vs. ethylene formation. J. Phys. Chem. C. 115, 6788–6795 (2011)CrossRefGoogle Scholar
  21. 21.
    Lang, S.M., Bernhardt, T.M., Barnett, R.N., Yoon, B., Landman, U.: Hydrogen-promoted oxygen activation by free gold cluster cations. J. Am. Chem. Soc. 131, 8939–8951 (2009)CrossRefGoogle Scholar
  22. 22.
    Gao, W., Chen, X.F., Li, J.C., Jiang, Q.: Is Au55 or Au38 cluster a threshold catalyst for styrene epoxidation? J. Phys. Chem. C. 114, 1148–1153 (2010)CrossRefGoogle Scholar
  23. 23.
    Outka, D.A., Madix, R.J.: Bronsted basicity of atomic oxygen on the Au(110) surface: reactions with methanol, acetylene, water, and ethylene. J. Am. Chem. Soc. 109, 1708–1714 (1987)CrossRefGoogle Scholar
  24. 24.
    Patterson, M.L., Weaver, M.J.: Adsorption and oxidation of ethylene at gold electrodes as examined by surface-enhanced Raman spectroscopy. J. Phys. Chem. 89, 1331–1334 (1985)CrossRefGoogle Scholar
  25. 25.
    Šebera, J., Hoffmannová, H., Krtil, P., Samec, Z., Záliš, S.: Electrochemical and density functional studies of the catalytic ethylene oxidation on nanostructured Au electrodes. Catal. Today. 158, 29–34 (2010)CrossRefGoogle Scholar
  26. 26.
    Rojluechai, S., Chavadej, S., Schwank, J.W., Meeyoo, V.: Catalytic activity of ethylene oxidation over Au, Ag and Au–Ag catalysts: support effect. Catal. Commun. 8, 57–64 (2007)CrossRefGoogle Scholar
  27. 27.
    Torres, D., Illas, F.: On the performance of Au(111) for ethylene epoxidation: a density functional study. J. Phys. Chem. B. 110, 13310–13313 (2006)CrossRefGoogle Scholar
  28. 28.
    Chen, H.-T., Chang, J.-G., Ju, S.-P., Chen, H.-L.: Ethylene epoxidation on a Au nanoparticle versus a Au(111) surface: a DFT study. J. Phys. Chem. Lett. 1, 739–742 (2010)CrossRefGoogle Scholar
  29. 29.
    Kokalj, A., Gava, P., de Gironcoli, S., Baroni, S.: What determines the catalyst’s selectivity in the ethylene epoxidation reaction. J. Catal. 254, 304–309 (2008)CrossRefGoogle Scholar
  30. 30.
    Kobayashi, H., Shimodaira, Y.: Density functional study of propylene oxidation on Ag and Au surfaces. Comparison to ethylene oxidation. THEOCHEM J. Mol. Struct. 762, 57–67 (2006)CrossRefGoogle Scholar
  31. 31.
    Nakatsuji, H., Hu, Z.-M., Nakai, H., Ikeda, K.: Activation of O2 on Cu, Ag, and Au surfaces for the epoxidation of ethylene: dipped adcluster model study. Surf. Sci. 387, 328–341 (1997)CrossRefGoogle Scholar
  32. 32.
    Lee, C.-C., Chen, H.-T.: Adsorption and reaction of C2H4 and O2 on a Nanosized gold cluster: a computational study. J. Phys. Chem. A. 119, 8547–8555 (2015)CrossRefGoogle Scholar
  33. 33.
    Liu, X., Yang, Y., Chu, M., Duan, T., Meng, C., Han, Y.: Defect stabilized gold atoms on graphene as potential catalysts for ethylene epoxidation: a first-principles investigation. Catal. Sci. Technol. 6, 1632–1641 (2016)CrossRefGoogle Scholar
  34. 34.
    Chen, H.-T., Chan, C.-W.: Promoting ethylene epoxidation on gold nanoclusters: self and CO induced O2 activation. Phys. Chem. Chem. Phys. 17, 22336–22341 (2015)CrossRefGoogle Scholar
  35. 35.
    Lyalin, A., Taketsugu, T.: Cooperative adsorption of O2 and C2H4 on small gold clusters. J. Phys. Chem. C. 113, 12930–12934 (2009)CrossRefGoogle Scholar
  36. 36.
    Lyalin, A., Taketsugu, T.: Reactant-promoted oxygen dissociation on gold clusters. J. Phys. Chem. Lett. 1, 1752–1757 (2010)CrossRefGoogle Scholar
  37. 37.
    Bakker, J.M., Lapoutre, V.J.F., Redlich, B., Oomens, J., Sartakov, B.G., Fielicke, A., von Helden, G., Meijer, G., van der Meer, A.F.G.: Intensity-resolved IR multiple photon ionization and fragmentation of C60. J. Chem. Phys. 132, 074305 (2010)CrossRefGoogle Scholar
  38. 38.
    Lang, S.M., Bernhardt, T.M., Bakker, J.M., Yoon, B., Landman, U.: Selective C-H bond activation of ethane by free gold clusters. Int. J. Mass Spectrom. 435, 241–250 (2019)CrossRefGoogle Scholar
  39. 39.
    Kresse, G., Hafner, J.: Ab. initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558–561 (1993)CrossRefGoogle Scholar
  40. 40.
    Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal -amorphous-semiconductor transition in germanium. Phys. Rev. B. 49, 14251–14269 (1994)CrossRefGoogle Scholar
  41. 41.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11185 (1996)CrossRefGoogle Scholar
  42. 42.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  43. 43.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999)CrossRefGoogle Scholar
  44. 44.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  45. 45.
    Makov, G., Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B. 51, 4014–4022 (1995)CrossRefGoogle Scholar
  46. 46.
    Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverrίa, J., Cremades, E., Barragán, F., Alvarez, S.: Covalent radii revisited. Dalton Trans. 2008, 2832–2838 (2008)CrossRefGoogle Scholar
  47. 47.
    Giannozzi, P., Baroni, S.: Vibrational and dielectric properties of C60 from density-functional perturbation theory. J. Chem. Phys. 100, 8537–8539 (1994)CrossRefGoogle Scholar
  48. 48.
    Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–561 (2001)CrossRefGoogle Scholar
  49. 49.
    Yoon, B., Häkkinen, H., Landman, U.: Interaction of O2 with gold clusters: molecular and dissociative adsorption. J. Phys. Chem. A. 107, 4066–4071 (2003)CrossRefGoogle Scholar
  50. 50.
    Bernhardt, T.M.: Gas-phase kinetics and catalytic reactions of small silver and gold clusters. Int. J. Mass Spectrom. 243, 1–29 (2005)CrossRefGoogle Scholar
  51. 51.
    Cox, D.M., Brickman, R., Creegan, K., Kaldor, A.: Gold clusters: reactions and deuterium uptake. Z. Phys. D. 19, 353–355 (1991)CrossRefGoogle Scholar
  52. 52.
    Lee, T.H., Ervin, K.M.: Reactions of copper group cluster anions with oxygen and carbon monoxide. J. Chem. Phys. 98, 10023–10031 (1994)CrossRefGoogle Scholar
  53. 53.
    Salisbury, B.E., Wallace, W.T., Whetten, R.L.: Low-temperature activation of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity. Chem. Phys. 262, 131–141 (2000)CrossRefGoogle Scholar
  54. 54.
    Hagen, J., Socaciu, L.D., Elijazyfer, M., Heiz, U., Bernhardt, T.M., Wöste, L.: Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: model complexes for catalytic CO oxidation. Phys. Chem. Chem. Phys. 4, 1707–1709 (2002)CrossRefGoogle Scholar
  55. 55.
    Stolcic, D., Fischer, M., Ganteför, G., Kim, Y.D., Sun, Q., Jena, P.: Direct observation of key reaction intermediates on gold clusters. J. Am. Chem. Soc. 125, 2848–2849 (2003)CrossRefGoogle Scholar
  56. 56.
    Woodham, A.P., Meijer, G., Fielicke, A.: Activation of molecular oxygen by anionic gold clusters. Angew. Chem. Int. Ed. 51, 4444 (2012)CrossRefGoogle Scholar
  57. 57.
    Cox, D.M., Brickman, R., Creegan, K., Kaldor, A.: Studies of the chemical properties of size selected metal clusters: kinetics and saturation. Mat. Res. Soc. Symp. Proc. 206, 43 (1991)CrossRefGoogle Scholar
  58. 58.
    Koszinowski, K., Schröder, D., Schwarz, H.: Additivity effects in the reactivities of bimetallic cluster ions PtmAun +. Chem. Phys. Chem. 4, 1233–1237 (2003)CrossRefGoogle Scholar
  59. 59.
    Bürgel, C., Reilly, N.M., Johnson, G.E., Mitrić, R., Kimble, M.L., Castleman Jr., A.W., Bonačić-Koutecký, V.: Influence of charge state on the mechanism of CO oxidation on gold clusters. J. Am. Chem. Soc. 130, 1694–1698 (2008)CrossRefGoogle Scholar
  60. 60.
    Lang, S.M., Bernhardt, T.M.: Cooperative and competitive coadsorption of H2, O2, and N2 on Aux + (x = 3,5). J. Chem. Phys. 131, 024310 (2009)CrossRefGoogle Scholar
  61. 61.
    Woodham, A.P., Fielicke, A.: Superoxide formation on isolated cationic gold clusters. Angew. Chem. Int. Ed. 53, 6554–6557 (2014)CrossRefGoogle Scholar
  62. 62.
    Johnson, G.E., Reilly, N.M., Tyo, E.C., Castleman Jr., A.W.: Gas-phase reactivity of gold oxide cluster cations with CO. J. Phys. Chem. C. 112, 9730–9736 (2008)CrossRefGoogle Scholar
  63. 63.
    NIST Chemistry Webbook: Nist Standard Reference Database, 69th edn. National Institute of Standards and Technology, Gaithersburg MD http://webbook.nist.gov
  64. 64.
    Lide, D.R.: Handbook of Chemistry and Physics, 76th edn. CRC Press, Boca Raton, FL (1995)Google Scholar
  65. 65.
    Yoon, B., Koskinen, P., Huber, B., Kostko, O., von Issendorff, B., Häkkinen, H., Moseler, M., Landman, U.: Size-dependent structural evolution and chemical reactivity of gold clusters. ChemPhysChem. 8, 157–161 (2007)CrossRefGoogle Scholar
  66. 66.
    Torres, M.B., Fernández, E.M., Balbás, L.C.: Theoretical study of oxygen adsorption on pure Aun+1 + and doped MAun + cationic gold clusters for M= Ti, Fe and n = 3-7. J. Phys. Chem. A. 112, 6678–6689 (2008)CrossRefGoogle Scholar
  67. 67.
    Varganov, S.A., Olson, R.M., Gordon, M.S., Metiua, H.: The Interaction of Oxygen with Small Gold. Clusters. 119, 2531–2537 (2003)Google Scholar
  68. 68.
    Sun, Q., Jena, P., Kim, Y.D., Fischer, M., Ganteför, G.: Interactions of Au cluster anions with oxygen. J. Chem. Phys. 120, 6510–6515 (2004)CrossRefGoogle Scholar
  69. 69.
    Mills, G., Gordon, M.S., Metiu, H.: Oxygen adsorption on Au clusters and a rough Au(111) surface: the role of surface flatness, electron confinement, excess electrons, and band gap. J. Chem. Phys. 118, 4198–4205 (2003)CrossRefGoogle Scholar
  70. 70.
    Mills, G., Gordon, M.S., Metiu, H.: The adsorption of molecular oxygen on neutral and negative Aun clusters (n = 2–5). Chem. Phys. Lett. 359, 493–499 (2002)CrossRefGoogle Scholar
  71. 71.
    Ding, X., Li, Z., Yang, J., Hou, J.G., Zhu, Q.: Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys. 120, 9594–9594 (2004)CrossRefGoogle Scholar
  72. 72.
    Okumura, M., Kitagawa, Y., Haruta, M., Yamaguchi, K.: The interaction of neutral and charged Au clusters with O2, CO and H2. Appl. Catal. A: General. 291, 37–44 (2005)CrossRefGoogle Scholar
  73. 73.
    Woodham, A.P., Meijer, G., Fielicke, A.: Charge separation promoted activation of molecular oxygen by neutral gold clusters. J. Am. Chem. Soc. 135, 1727–1730 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Institute of Surface Chemistry and CatalysisUniversity of UlmUlmGermany
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Radboud University Institute for Molecules and MaterialsNijmegenNetherlands

Personalised recommendations