Advertisement

Intramolecular Hydrogen Transfer from the Alpha-Carbon (Cα) and Backbone Amide Nitrogen (Nb) to Form c- and y-Ions in Negative-Ion CID of Peptides

  • Asaki Kagoshima
  • Kanako Sekimoto
  • Mitsuo TakayamaEmail author
Research Article

Abstract

The source of hydrogen in the formation of c- and y-ions produced by intramolecular hydrogen transfer in negative-ion CID experiments with peptides has been examined using Cα-, Cβ-, and backbone amide (Nb)-deuterated peptides AAA(d3)AA, AAG(d2)AA, AAAG(d2)A, and AAAAA-d7, as well as five other peptides. The c- and y-ions produced by deuterium transfer from the deuterated residues were detected and identified by the exact m/z values obtained with a high-resolution orbitrap mass spectrometer. The rate of deuterium transfer obtained indicates that over 50% of the hydrogen was originated from the backbone amide nitrogen, with the residual hydrogen coming from the backbone Cα. It is clear that the hydrogen does not originate from the side chain Cβ. It is hypothesized that the intramolecular hydrogen transfer to form negative c- and y-ions takes place via 3-, 4-, 6-, 7-, 8-, and 9-membered ring transition states.

Keywords

Peptide Negative ion CID c-ion y-ion Hydrogen transfer 

Notes

Acknowledgements

The reviewer’s suggestion about the use of a deuterated alanine pentamer AAAAA-d7 is highly acknowledged. MT gratefully acknowledges the support from the fund for Creation of Innovation Centers for Advanced Interdisciplinary Research Area Program in the Project for Developing Innovation Systems from the Ministry of Education, Culture, Sports, Science and Technology.

References

  1. 1.
    Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B.: Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem. 57, 675–679 (1985)CrossRefGoogle Scholar
  2. 2.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64–71 (1989)CrossRefGoogle Scholar
  3. 3.
    Nold, M.J., Wesdemiotis, C., Yalcin, T., Harrison, A.G.: Amide bond dissociation in protonated peptides. Structure of the N-terminal ionic and neutral fragments. Int J Mass Spectrom Ion Process. 164, 137–153 (1997)CrossRefGoogle Scholar
  4. 4.
    Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: J Mass Spectrom. 35, 1399–1406 (2000)CrossRefGoogle Scholar
  5. 5.
    Paizs, B., Suhai, S.: S.: fragmentation pathways of protonated peptides. Mass Spectrom Rev. 24, 508–548 (2005)CrossRefGoogle Scholar
  6. 6.
    Harrison, A.G.: To b or not to b: the ongoing saga of peptide b ions. Mass Spectrom Rev. 28, 640–654 (2009)CrossRefGoogle Scholar
  7. 7.
    Bowie, J.H., Brinkworth, C.S., Dua, S.: Collision-induced fragmentations of the [M-H]- parent anions of underivatized peptides: an aid to structure determination and some unusual negative ion cleavages. Mass Spectrom Rev. 21, 87–107 (2002)CrossRefGoogle Scholar
  8. 8.
    Harrison, A.G.: Sequence-specific fragmentation of deprotonated peptides containing H or alkyl side chains. J Am Soc Mass Spectrom. 12, 1–13 (2001)CrossRefGoogle Scholar
  9. 9.
    Harrison, A.G., Young, A.B.: Fragmentation reactions of deprotonated peptides containing proline. J Mass Spectrom. 40, 1173–1186 (2005)CrossRefGoogle Scholar
  10. 10.
    Harrison, A.G., Young, A.B.: Fragmentation reactions of deprotonated peptides containing aspartic acid. Int J Mass Spectrom. 255, 111–122 (2006)CrossRefGoogle Scholar
  11. 11.
    Pu, D., Cassady, C.J.: Negative ion dissociation of peptides containing hydroxyl side chains. Rapid Commun Mass Spectrom. 22, 91–100 (2008)CrossRefGoogle Scholar
  12. 12.
    Pu, D., Clipston, N.L., Cassady, C.J.: A comparison of positive and negative ion collision-induced dissociation for model heptapeptides with one basic residue. J Mass Spectrom. 45, 297–305 (2010)CrossRefGoogle Scholar
  13. 13.
    Bokatzian-Johnson, S.S., Stover, M.L., Dixon, D.A., Cassady, C.J.: A comparison of the effects of amide and acid groups at the C-terminus on the collision-induced dissociation of deprotonated peptides. J Am Soc Mass Spectrom. 23, 1544–1557 (2012)CrossRefGoogle Scholar
  14. 14.
    Bokatzian-Johnson, S.S., Stover, M.L., Dixon, D.A., Cassady, C.J.: Gas-phase deprotonation of the peptide backbone for tripeptides and their methyl esters with hydrogen and methyl side chains. J Phys Chem B. 116, 14844–14858 (2012)CrossRefGoogle Scholar
  15. 15.
    Sugasawa, N., Kawase, T., Oshikata, M., Iimuro, R., Motoyama, A., Takayama, M.: Formation of c- and z-ions due to preferential cleavage at the N-ca bond of xxx-asp/Asn residues in negative-ion CID of peptides. Int J Mass Spectrom. 383-384, 38–43 (2015)CrossRefGoogle Scholar
  16. 16.
    Takayama, M., Sekiya, S., Iimuro, R., Iwamoto, S., Tanaka, K.: Selective and nonselective cleavages in positive and negative CID of the fragments generated from in-source decay of intact proteins in MALDI-MS. J Am Soc Mass Spectrom. 25, 120–131 (2014)CrossRefGoogle Scholar
  17. 17.
    Yaguee, J., Paradela, A., Ramos, M., Ogueta, S., Marina, A., Barahona, F., de Castro, J.A.L., Vazquez, J.: Peptide rearrangement during quadrupole ion trap fragmentation: added complexity to MS/MS spectra. Anal Chem. 75, 1524–1535 (2003)CrossRefGoogle Scholar
  18. 18.
    Harrison, A.G., Young, A.B., Bleiholder, C., Suhai, S., Paizs, B.: Scrambling of sequence information in collision-induced dissociation of peptides. J Am Chem Soc. 128, 10364–10265 (2006)CrossRefGoogle Scholar
  19. 19.
    Jia, C., Qi, W., He, Z.: Cyclization reaction of peptide fragment ions during multistage collisionally activated decomposition: an inducement to lose internal amino-acid residues. J Am Soc Mass Spectrom. 18, 663–678 (2007)CrossRefGoogle Scholar
  20. 20.
    Edelson-Averbukh, A., Pipkorn, R., Lehmann, W.D.: Analysis of protein phosphorylation in the regions of consecutive serine/threonine residues by negative ion electrospray collision-induced dissociation. Approach to pinpointing of phosphorylation sites. Anal Chem. 79, 3476–3486 (2007)CrossRefGoogle Scholar
  21. 21.
    Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 11, 601 (1984)CrossRefGoogle Scholar
  22. 22.
    Biemann, K.: Contribution of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 16, 99–111 (1988)CrossRefGoogle Scholar
  23. 23.
    Chu, I.K., Siu, J.C.-K., Lau, J.K.-C., Tang, W.K., Mu, X., Lai, C.-K., Guo, X., Wang, X., Li, N., Xia, Y., Kong, X., Oh, H.B., Ryzhov, V., Tureček, F., Hopkinson, A.C.: Proposed nomenclature for peptide ion fragmentation. Int J Mass Spectrom. 390, 24–27 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Asaki Kagoshima
    • 1
  • Kanako Sekimoto
    • 1
  • Mitsuo Takayama
    • 1
    Email author
  1. 1.Mass Spectrometry LaboratoryYokohama City UniversityYokohamaJapan

Personalised recommendations