Spectroscopic Evidence for Lactam Formation in Terminal Ornithine b2+ and b3+ Fragment Ions

  • Zachary M. Smith
  • Xiye Wang
  • Jonathan R. Scheerer
  • Jonathan Martens
  • Giel Berden
  • Jos Oomens
  • Vincent Steinmetz
  • Arpad Somogyi
  • Vicki Wysocki
  • John C. PoutsmaEmail author
Research Article


Infrared multiple photon dissociation action spectroscopy was performed on the AlaOrn b2+ and AlaAlaOrn b3+ fragment ions from ornithine-containing tetrapeptides. Infrared spectra were obtained in the fingerprint region (1000–2000 cm−1) using the infrared free electron lasers at the Centre Laser Infrarouge d’Orsay (CLIO) facility in Orsay, France, and the free electron lasers for infrared experiments (FELIX) facility in Nijmegen, the Netherlands. A novel terminal ornithine lactam AO+ b2+ structure was synthesized for experimental comparison and spectroscopy confirms that the b2+ fragment ion from AOAA forms a lactam structure. Comparison of experimental spectra with scaled harmonic frequencies at the B3LYP/6-31+G(d,p) level of theory shows that AO+ b2+ forms a terminal lactam protonated either on the lactam carbonyl oxygen or the N-terminal nitrogen atom. Several low-lying conformers of these isomers are likely populated following IRMPD dissociation. Similarly, a comparison of the experimental IRMPD spectrum with calculated spectra shows that AAO+ b3+-ions also adopt a lactam structure, again with multiple different protonation sites, during fragmentation. This study provides spectroscopic confirmation for the lactam cyclization proposed for the “ornithine effect” and represents an alternative bn+ structure to the oxazolone and diketopiperazine/macrocycle structures most often formed.


IRMPD spectroscopy b2+ ions Peptide fragmentation 



The authors gratefully acknowledge the aid and expertise of the CLIO facility, P. Maître, Director. The authors also would like to thank the FELIX team for their aid and expertise. This research was supported by NIH Grant 1R15GM116180-01 and NSF Grant CHE: 1464763

Supplementary material

13361_2019_2244_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)


  1. 1.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64 (1989)CrossRefGoogle Scholar
  2. 2.
    Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60, 2299 (1988)CrossRefGoogle Scholar
  3. 3.
    Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y.: Protein and polymer analysis up to M/Zx 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151 (1988)CrossRefGoogle Scholar
  4. 4.
    Paizs, B., Suhai, S.: Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508 (2005)CrossRefGoogle Scholar
  5. 5.
    Smith, L.L., Herrmann, K.A., Wysocki, V.H.: Investigation of gas phase ion structure for proline-containing b(2) ion. J. Am. Soc. Mass Spectrom. 17, 20 (2006)CrossRefGoogle Scholar
  6. 6.
    Yoon, S.H., Chamot-Rooke, J., Perkins, B.R., Hilderbrand, A.E., Poutsma, J.C., Wysocki, V.H.: IRMPD spectroscopy shows that AGG forms an oxazolone b2 + ion. J. Am. Chem. Soc. 130, 17644 (2008)CrossRefGoogle Scholar
  7. 7.
    Oomens, J., Young, S., Molesworth, S., van Stipdonk, M.: Spectroscopic evidence for an oxazolone structure of the b(2) fragment ion from protonated tri-alanine. J. Am. Soc. Mass Spectrom. 20, 334 (2009)CrossRefGoogle Scholar
  8. 8.
    Bythell, B.J., Somogyi, A., Paizs, B.: What is the structure of b2 ions generated from doubly protonated tryptic peptides? J. Am. Soc. Mass Spectrom. 20, 618 (2009)CrossRefGoogle Scholar
  9. 9.
    Perkins, B. R.; Chamot-Rooke, J.; Yoon, S. H.; Gucinski, A. C.; Somogyi, A.; Wysocki, V. H. Evidence of diketopiperazine and oxazolone structures for HA b2 + ion. J. Am. Chem. Soc. 2009, 131, 17528Google Scholar
  10. 10.
    Chen, X., Yu, L., Steill, J.D., Oomens, J., Polfer, N.C.: Effect of peptide fragment size on the propensity of cyclization in collision-induced dissociation: oligoglycine b2-b8. J. Am. Chem. Soc. 131, 18272 (2009)CrossRefGoogle Scholar
  11. 11.
    Gucinski, A.C., Chamot-Rooke, J., Nicol, E., Somogyi, A., Wysocki, V.H.: Structural influences on preferential oxazolone versus diketopiperazine b2 + ion formation for histidine analogue-containing peptides. J. Phys. Chem. A. 116, 4296 (2012)CrossRefGoogle Scholar
  12. 12.
    Kullman, M.J., Molesworth, S., Berden, G., Oomens, J., Van Stipdonk, M.: IRMPD spectroscopy b2 ions from protonated tripeptides with 4-aminomethyl benzoic acid residues. Int. J. Mass Spectrom. 316-318, 174 (2012)CrossRefGoogle Scholar
  13. 13.
    Armentrout, P.B., Clark, A.: The simplest b2 + ion: determining its structure from its energetics by a direct comparison of the threshold collision-​induced dissociation of protonated oxazolone and diketopiperazine. Int. J. Mass Spectrom. 316-318, 182 (2012)CrossRefGoogle Scholar
  14. 14.
    Bernier, M.C., Paizs, B., Wysocki, V.H.: Influence of a gamma amino acid on the structures and reactivity of peptide a3 ions. Int. J. Mass Spectrom. 316-318, 259 (2012)CrossRefGoogle Scholar
  15. 15.
    Gucinski, A.C., Chamot-Rooke, J., Steinmetz, V., Somogyi, A., Wysocki, V.H.: Influence of N-terminal residue composition on the structure of proline-containing b2 + ions. J. Phys. Chem. A. 117, 1291 (2013)CrossRefGoogle Scholar
  16. 16.
    Morrison, L.J., Chamot-Rooke, J., Wysocki, V.H.: IR action spectroscopy shows competitive oxazolone and diketopiperazine formation in peptides depends on peptide length and identity of terminal residue in the departing fragment. Analyst. 139, 2137 (2014)CrossRefGoogle Scholar
  17. 17.
    Karaca, S., Atik, A.E., Elmaci, N., Yalcin, T.: Gas-phase structures and proton affinities of N-terminal proline containing b2+ ions from protonated model peptides. Int. J. Mass Spectrom. 393, 1 (2015)CrossRefGoogle Scholar
  18. 18.
    Bernier, M.C., Chamot-Rooke, J., Wysocki, V.H.: R vs. S fluoroproline ring substitution: trans/cis effects on the formation of b2 ions in gas-phase peptide fragmentation. Phys. Chem. Chem. Phys. 18, 2202 (2016)CrossRefGoogle Scholar
  19. 19.
    Grzetic, J., Oomens, J.: Spectroscopic identification of cyclic imide b2-ions from peptides containing Gln and Asn residues. J. Am. Soc. Mass Spectrom. 24, 1228 (2013)CrossRefGoogle Scholar
  20. 20.
    Martens, J.K., Grzetic, J., Berden, G., Oomens, J.: Gas-phase conformations of small polyprolines and their fragment ions by IRMPD spectroscopy. Int. J. Mass Spectrom. 377, 179 (2015)CrossRefGoogle Scholar
  21. 21.
    Poutsma, J.C., Martens, J.K., Oomens, J., Maitre, P., Steinmetz, V., Bernier, M., Jia, M., Wysocki, V.H.: Infrared multiple-photon dissociation action spectroscopy of the b2 + ion from PPG: evidence of third residue affecting b2 + fragment structure. J. Am. Soc. Mass Spectrom. 28, 1482 (2017)CrossRefGoogle Scholar
  22. 22.
    Grzetic, J., Oomens, J.: Effect of the Asn side chain on the dissociation of deprotonated peptides elucidated by IRMPD spectroscopy. Int. J. Mass Spectrom. 354-355, 70 (2013)CrossRefGoogle Scholar
  23. 23.
    Nelson, C.R., Abutokaikah, M.T., Harrison, A.G., Bythell, B.J.: Proton mobility in b2 ion formation and fragmentation reactions of histidine-containing peptides. J. Am. Soc. Mass Spectrom. 27, 487 (2015)CrossRefGoogle Scholar
  24. 24.
    Bythell, B.J., Csonka, I.P., Suhai, S., Barofsky, D.F., Paizs, B.: Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine. J. Phys. Chem. B. 114, 15092 (2010)CrossRefGoogle Scholar
  25. 25.
    McGee, W.M., McLuckey, S.A.: The ornithine effect in peptide cation dissociation. J. Mass Spectrom. 48, 856 (2013)CrossRefGoogle Scholar
  26. 26.
    Crittenden, C.M., Parker, W.R., Jenner, Z.B., Bruns, K.A., Akin, L.D., McGhee, W.M., Ciccimaro, E., Brodbelt, J.S.: Exploitation of the ornithine effect enhances characterization of stapled and cyclic peptides. J. Am. Soc. Mass Spectrom. 27, (2016)Google Scholar
  27. 27.
    Polfer, N.C., Oomens, J.: Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom. Rev. 28, 468 (2009)CrossRefGoogle Scholar
  28. 28.
    Chan, W.C., White, P.D.: Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, New York (2000)Google Scholar
  29. 29.
    Amblard, M., Fehrentz, J.-A., Subra, G.: Methods and protocols of modern solid phase peptide synthesis. Mol. Biotechnol. 33, 239 (2006)CrossRefGoogle Scholar
  30. 30.
    Martens, J.; Grzetic, J.; Berden, G.; Oomens, J. Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy Nat. Commun. 2016, 7, 11754Google Scholar
  31. 31.
    Martens, J.K., Berden, G., Gebhardt, C.R., Oomens, J.: Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. Rev. Sci. Instrum. 87, 103108 (2016)CrossRefGoogle Scholar
  32. 32.
    Prazeres, R., Glotin, F., Insa, C., Jaroszynski, D.A., Ortega, J.M.: Two-colour operation of a free-electron laser and applications in the mid-infrared. Eur. J. Mass Spectrom. 3, 87 (1998)Google Scholar
  33. 33.
    Aleese, L.M., Simon, A., McMahon, T.B., Ortega, J.M., Scuderi, D., Lemaire, J., Maitre, P.: Mid-IR spectroscopy of protonated leucine methyl ester performed with an FTICR or a Paul type ion-trap. Int. J. Mass Spectrom. 249, 14 (2006)CrossRefGoogle Scholar
  34. 34.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision E.01 E. 01 Gaussian, Inc., Wallingford, CT 2013Google Scholar
  35. 35.
    PCModel Serena Software, 2006Google Scholar
  36. 36.
    Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  37. 37.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B. 37, 785 (1988)CrossRefGoogle Scholar
  38. 38.
    Scott, A.P., Radom, L.: Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moeller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 100, 16502 (1996)CrossRefGoogle Scholar
  39. 39.
    Andriole, E.J., Colyer, K.E., Cornell, E., Poutsma, J.C.: Proton affinity of canavanine and canaline, oxy-analogs of arginine and ornithine, from the extended kinetic method. J. Phys. Chem. A. 110, 11501 (2006)CrossRefGoogle Scholar
  40. 40.
    Jones, C.M., Bernier, M., Carson, E., Colyer, K.E., Metz, R., Pawlow, A., Wischow, E., Webb, I., Andriole, E.J., Poutsma, J.C.: Gas-phase acidities of the 20 protein amino acids. Int. J. Mass Spectrom. 267, 54 (2007)CrossRefGoogle Scholar
  41. 41.
    Muetterties, C., Drissi Touzani, A., Hardee, I., Huynh, K.T., Poutsma, J.C.: Gas-phase acid-base properties of 1-aminocycloalkane-1-carboxylic acids from the extended kinetic method. Int. J. Mass Spectrom. 378, 59 (2015)CrossRefGoogle Scholar
  42. 42.
    Schroeder, O.E., Andriole, E.J., Carver, K.L., Poutsma, J.C.: The proton affinity of lysine analogs using the extended kinetic method. J. Phys. Chem. A. 108, 326 (2004)CrossRefGoogle Scholar
  43. 43.
    In NIST Standard Reference Database 101; Johnson III, R. D., Ed.; national insititute of standards: 2018Google Scholar
  44. 44.
    Zhao, Y., Trular, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts. 120, 215 (2008)CrossRefGoogle Scholar
  45. 45.
    Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615 (2008)CrossRefGoogle Scholar
  46. 46.
    Polfer, N.C.: Infrared multiple photon dissociation spectroscopy of trapped ions. Chem. Soc. Rev. 40, 2211 (2011)CrossRefGoogle Scholar
  47. 47.
    Boles, G.C., Hightower, R.L., Coates, R.A., McNary, C.P., Berden, G., Oomens, J., Armentrout, P.B.: Experimental and theoretical investigations of infrared multiple photon dissociation spectra of aspartic acid complexes with Zn2+ and Cd2+. J. Phys. Chem. B. 122, 3836 (2018)CrossRefGoogle Scholar
  48. 48.
    Curtin, D.Y.: Stereochemical control of organic reactions. Differences in behavior of diastereomers 1. Ethane derivatives. The cis effect. Rec. Chem. Prog. 15, 111 (1954)Google Scholar
  49. 49.
    Haupert, L.J., Poutsma, J.C., Wenthold, P.G.: The Curtin-Hammett principle in mass spectrometry. Acc. Chem. Res. 42, 1480 (2009)CrossRefGoogle Scholar
  50. 50.
    Armentrout, P.B., Heaton, A.L.: Thermodynamics and mechanisms of protonated Diglycine decomposition: a computational study. J. Am. Soc. Mass Spectrom. 23, 621 (2012)CrossRefGoogle Scholar
  51. 51.
    Roscioli, J.R., R., M. L, Johnson, M.A.: Quantum structure of the intermolecular proton bond. Science. 316, 249 (2007)CrossRefGoogle Scholar
  52. 52.
    Dit Fouque, K.J., Lavanant, H., Zirah, S., Steinmetz, V., Rebuffat, S., Maitre, P., Afonso, C.: IRMPD spectroscopy: evidence of hydrogen bonding in the gas phase conformations of lasso peptides and their branched-cyclictopoisomers. J. Phys. Chem. A. 2016, 120, (2016)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Zachary M. Smith
    • 1
  • Xiye Wang
    • 1
  • Jonathan R. Scheerer
    • 1
  • Jonathan Martens
    • 2
  • Giel Berden
    • 2
  • Jos Oomens
    • 2
  • Vincent Steinmetz
    • 3
  • Arpad Somogyi
    • 4
  • Vicki Wysocki
    • 4
  • John C. Poutsma
    • 1
    Email author
  1. 1.Department of ChemistryThe College of William & MaryWilliamsburgUSA
  2. 2.Institute for Molecules and Materials, FELIX LaboratoryRadboud UniversityNijmegenThe Netherlands
  3. 3.Laboratorie de Chimie Physique, CNRS UMR 8000Université ParisOrsayFrance
  4. 4.Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations