Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1700–1712 | Cite as

The Establishment of Tandem Mass Spectrometric Fingerprints of Phytosterols and Tocopherols and the Development of Targeted Profiling Strategies in Vegetable Oils

  • Kang Jiang
  • George Gachumi
  • Asmita Poudel
  • Bryn Shurmer
  • Zafer Bashi
  • Anas El-AneedEmail author
Research Article

Abstract

Phytosterols and tocopherols are essential for plant biochemistry, and they possess beneficial health effects for humans. Evaluating the tandem mass spectrometric (MS/MS) behavior of phytosterols and tocopherols is needed for the development of a qualitative and quantitative method for these biologically active plant metabolites. Herein, the MS/MS dissociation behavior of phytosterols and tocopherols is elucidated to establish generalized MS/MS fingerprints. MS/MS and multistage (MS3) analysis revealed common fragmentation behavior among the four tested phytosterols, namely β-sitosterol, stigmasterol, campesterol, and brassicasterol. Similar analysis was conducted for the tocopherols (i.e., alpha (α), beta (β), gamma (γ), and delta (δ)). As such, a universal MS/MS fragmentation pathway for each group was successfully established for the first time. Based on the generalized MS/MS fragmentation behavior of phytosterols, diagnostic product ions were chosen for the development of profiling methods for over 20 naturally occurring phytosterols. A precursor ion scan-triggered-enhanced product ion scan (PIS-EPI) method was established. Due to enhanced chromatographic peaks, multiple ion monitoring-triggered-enhanced product ion scan (MIM-EPI) was employed for confirmation. The screening approach was applied successfully to identify blinded samples obtained from standard mixtures as well as sesame and olive oils. The oil samples contain other phytosterols, and their successful identification indicates that, the generalized MS/MS fragmentation behavior is applicable to various structures of phytosterols. A similar approach was attempted for tocopherols and was only hindered by the low concentration of these bioactive metabolites present in the oil samples.

Keywords

MS/MS fingerprints Phytosterols Tocopherols Profiling Precursor ion scan Multiple ion monitoring PIS-EPI MIM-EPI Vegetable oil 

Notes

Acknowledgements

Funding for this project is provided by an Agriculture Development Fund, Ministry of Agriculture, Government of Saskatchewan, Canada. The QTRAP 6500 was acquired via a Western Economic Diversification Canada grant. Mr. Jiang acknowledges scholarship joint funding from the Beijing Institute of Technology and the University of Saskatchewan. The authors would like to thank Ms. Deborah Michel for training Mr. Kang on the QTRAP instrument.

Supplementary material

13361_2019_2242_MOESM1_ESM.docx (740 kb)
ESM 1 (DOCX 739 kb)

References

  1. 1.
    Hartmann, M.-A.: Plant sterols and the membrane environment. Trends Plant Sci. 3, 170–175 (1998)CrossRefGoogle Scholar
  2. 2.
    Blokhina, O., Virolainen, E., Fagerstedt, K.V.: Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194 (2003)CrossRefGoogle Scholar
  3. 3.
    Ling, W., Jones, P.: Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci. 57, 195–206 (1995)CrossRefGoogle Scholar
  4. 4.
    Kamal-Eldin, A., Appelqvist, L.-Å.: The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 31, 671–701 (1996)CrossRefGoogle Scholar
  5. 5.
    Saremi, A., Arora, R.: Vitamin E and cardiovascular disease. Am. J. Ther. 17, e56–e65 (2010)CrossRefGoogle Scholar
  6. 6.
    Ikeda, I., Tanaka, K., Sugano, M., Vahouny, G., Gallo, L.: Inhibition of cholesterol absorption in rats by plant sterols. J. Lipid Res. 29, 1573–1582 (1988)Google Scholar
  7. 7.
    AbuMweis, S.S., Marinangeli, C.P., Frohlich, J., Jones, P.J.: Implementing phytosterols into medical practice as a cholesterol-lowering strategy: overview of efficacy, effectiveness, and safety. Can. J. Cardiol. 30, 1225–1232 (2014)CrossRefGoogle Scholar
  8. 8.
    Saraiva, D., Semedo, R., da Conceição Castilho, M., Silva, J.M., Ramos, F.: Selection of the derivatization reagent—the case of human blood cholesterol, its precursors and phytosterols GC–MS analyses. J. Chromatogr. B. 879, 3806–3811 (2011)CrossRefGoogle Scholar
  9. 9.
    Amiot, M.J., Knol, D., Cardinault, N., Nowicki, M., Bott, R., Antona, C., Borel, P., Bernard, J.-P., Duchateau, G., Lairon, D.: Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans. J. Lipid Res. 52, 1256–1264 (2011)CrossRefGoogle Scholar
  10. 10.
    Othman, R.A., Moghadasian, M.H.: Beyond cholesterol-lowering effects of plant sterols: clinical and experimental evidence of anti-inflammatory properties. Nutr. Rev. 69, 371–382 (2011)CrossRefGoogle Scholar
  11. 11.
    Guedes, G.M., Albuquerque, R.S., Soares-Maciel, R.S., Freitas, M.A., Silva, V.A., Lima, E.O., Lima, M.A., Cunha, E.V., Coutinho, H.D.: Isolation of phytosterols of Dalbergia ecastophyllum (L.) Taub.(Leguminosae) and modulation of antibiotic resistance by a possible membrane effect. Arab. J. Chem. (2014)Google Scholar
  12. 12.
    Suttiarporn, P., Chumpolsri, W., Mahatheeranont, S., Luangkamin, S., Teepsawang, S., Leardkamolkarn, V.: Structures of phytosterols and triterpenoids with potential anti- cancer activity in bran of black non- glutinous rice. Nutrients. 7, 1672 (2015)CrossRefGoogle Scholar
  13. 13.
    Phillips, K.M., Ruggio, D.M., Ashraf-Khorassani, M.: Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 53, 9436–9445 (2005)CrossRefGoogle Scholar
  14. 14.
    Buettner, G.R.: The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300, 535–543 (1993)CrossRefGoogle Scholar
  15. 15.
    Baldioli, M., Servili, M., Perretti, G., Montedoro, G.: Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 73, 1589–1593 (1996)CrossRefGoogle Scholar
  16. 16.
    Duthie, G.G., Gardner, P.T., Morrice, P.C., McPhail, D.B.: The contribution of dα-tocopherol and dγ-tocopherol to the antioxidant capacity of several edible plant oils. Nat. Sci. 8, 41 (2016)Google Scholar
  17. 17.
    Galli, F., Stabile, A.M., Betti, M., Conte, C., Pistilli, A., Rende, M., Floridi, A., Azzi, A.: The effect of α-and γ-tocopherol and their carboxyethyl hydroxychroman metabolites on prostate cancer cell proliferation. Arch. Biochem. Biophys. 423, 97–102 (2004)CrossRefGoogle Scholar
  18. 18.
    Brand-Williams, W., Cuvelier, M.-E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 28, 25–30 (1995)CrossRefGoogle Scholar
  19. 19.
    Morel, S., Didierlaurent, A., Bourguignon, P., Delhaye, S., Baras, B., Jacob, V., Planty, C., Elouahabi, A., Harvengt, P., Carlsen, H., Kielland, A., Chomez, P., Garçon, N., Van Mechelen, M.: Adjuvant system AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine. 29, 2461–2473 (2011)CrossRefGoogle Scholar
  20. 20.
    Jones, P.J., AbuMweis, S.S.: Phytosterols as functional food ingredients: linkages to cardiovascular disease and cancer. Current Opinion in Clinical Nutrition & Metabolic Care. 12, 147–151 (2009)CrossRefGoogle Scholar
  21. 21.
    Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J., Vavreinova, S.: Buckwheat—the source of antioxidant activity in functional foods. Food Res. Int. 35, 207–211 (2002)CrossRefGoogle Scholar
  22. 22.
    Varzakas, T.: Functional foods case study: the incorporation of omega-3 fatty acids and phytosterol esters into filo products. CRC Press, (2015)Google Scholar
  23. 23.
    Ryan, E., Galvin, K., O’Connor, T., Maguire, A., O’Brien, N.: Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 62, 85–91 (2007)CrossRefGoogle Scholar
  24. 24.
    Mitei, Y., Ngila, J., Yeboah, S., Wessjohann, L., Schmidt, J.: Profiling of Phytosterols, tocopherols and tocotrienols in selected seed oils from Botswana by GC– MS and HPLC. J. Am. Oil Chem. Soc. 86, 617–625 (2009)CrossRefGoogle Scholar
  25. 25.
    Dumont, M.-J., Narine, S.S.: Soapstock and deodorizer distillates from North American vegetable oils: review on their characterization, extraction and utilization. Food Res. Int. 40, 957–974 (2007)CrossRefGoogle Scholar
  26. 26.
    Vlahakis, C., Hazebroek, J.: Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature. J. Am. Oil Chem. Soc. 77, 49–53 (2000)CrossRefGoogle Scholar
  27. 27.
    Fernandes, P., Cabral, J.M.S.: Phytosterols: applications and recovery methods. Bioresour. Technol. 98, 2335–2350 (2007)CrossRefGoogle Scholar
  28. 28.
    Xu, Y., Shi, X., Du, X., Xing, M., Xu, T., Meng, J., Feng, Z.: A method to extract natural vitamin E from by-product of refined vegetable. CN Patent ZL 200510114851. X. (2005)Google Scholar
  29. 29.
    Li, C., Wang, S.: Study of the process of extracting phytosterols from plant oil pitch or tall oil pitch. Sci. Technol. Food Ind. 6, 111–112 (2004)Google Scholar
  30. 30.
    Tan, J.L., Niu, X.M., Yang, G.Y., Wang, L., Duan, Y.X., Han, Y., Zhang, K.Q., Zhang, C.M.: Quantitative determination of free phytosterols in tobacco leaves by UPLC-MS/MS. J Liq Chromatogr R T. 36, 591–599 (2013)CrossRefGoogle Scholar
  31. 31.
    Kim, D., Park, J.B., Choi, W.K., Lee, S.J., Lim, I., Bae, S.K.: Simultaneous determination of beta-sitosterol, campesterol, and stigmasterol in rat plasma by using LC-APCI-MS/MS: application in a pharmacokinetic study of a titrated extract of the unsaponifiable fraction of Zea mays L. J. Sep. Sci. 39, 4060–4070 (2016)CrossRefGoogle Scholar
  32. 32.
    Flakelar, C.L., Prenzler, P.D., Luckett, D.J., Howitt, J.A., Doran, G.: A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem. 214, 147–155 (2017)CrossRefGoogle Scholar
  33. 33.
    Mo, S., Dong, L., Hurst, W., Breemen, R.: Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography– tandem mass spectrometry. Lipids. 48, 949–956 (2013)CrossRefGoogle Scholar
  34. 34.
    Inoue, T., Tatemori, S., Muranaka, N., Hirahara, Y., Homma, S., Nakane, T., Takano, A., Nomi, Y., Otsuka, Y.: The identification of vitamin E homologues in medicinal plant samples using ESI(+)-LC-MS3. J. Agric. Food Chem. 60, 9581–9588 (2012)CrossRefGoogle Scholar
  35. 35.
    Buse, J., Badea, I., Verrall, R.E., El-Aneed, A.: Tandem mass spectrometric analysis of novel diquaternary ammonium gemini surfactants and their bromide adducts in electrospray-positive ion mode ionization. J. Mass Spectrom. 46, 1060–1070 (2011)CrossRefGoogle Scholar
  36. 36.
    Donkuru, M., Chitanda, J.M., Verrall, R.E., El-Aneed, A.: Multi-stage tandem mass spectrometric analysis of novel β-cyclodextrin-substituted and novel bis-pyridinium gemini surfactants designed as nanomedical drug delivery agents. Rapid Commun. Mass Spectrom. 28, 757–772 (2014)CrossRefGoogle Scholar
  37. 37.
    Al-Dulaymi, M., El-Aneed, A.: Tandem mass spectrometric analysis of novel peptide-modified Gemini surfactants used as gene delivery vectors. J. Mass Spectrom. (2017)Google Scholar
  38. 38.
    Buse, J., Badea, I., Verrall, R.E., El-Aneed, A.: A general liquid chromatography tandem mass spectrometry method for the quantitative determination of diquaternary ammonium gemini surfactant drug delivery agents in mouse keratinocytes' cellular lysate. J. Chromatogr. A. 1294, 98 (2013)CrossRefGoogle Scholar
  39. 39.
    Buse, J., Purves, R.W., Verrall, R.E., Badea, I., Zhang, H., Mulligan, C.C., Peru, K.M., Bailey, J., Headley, J.V., El-Aneed, A.: The development and assessment of high- throughput mass spectrometry-based methods for the quantification of a nanoparticle drug delivery agent in cellular lysate. J. Mass Spectrom. 49, 1171–1180 (2014)CrossRefGoogle Scholar
  40. 40.
    Donkuru, M., Michel, D., Awad, H., Katselis, G., El-Aneed, A.: Hydrophilic interaction liquid chromatography–tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers. J. Chromatogr. A. 1446, 114–124 (2016)CrossRefGoogle Scholar
  41. 41.
    Schwudke, D., Oegema, J., Burton, L., Entchev, E., Hannich, J.T., Ejsing, C.S., Kurzchalia, T., Shevchenko, A.: Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal. Chem. 78, 585–595 (2006)CrossRefGoogle Scholar
  42. 42.
    Thevis, M., Geyer, H., Mareck, U., Schänzer, W.: Screening for unknown synthetic steroids in human urine by liquid chromatography-tandem mass spectrometry. J. Mass Spectrom. 40, 955–962 (2005)CrossRefGoogle Scholar
  43. 43.
    Naz, S., Sherazi, S., Talpur, F.N., Talpur, M.Y., Kara, H.: Determination of unsaponifiable constituents of deodorizer distillates by GC–MS. J. Am. Oil Chem. Soc. 89, 973–977 (2012)CrossRefGoogle Scholar
  44. 44.
    Ahmida, H.M., Bertucci, P., Franzò, L., Massoud, R., Cortese, C., Lala, A., Federici, G.: Simultaneous determination of plasmatic phytosterols and cholesterol precursors using gas chromatography–mass spectrometry (GC–MS) with selective ion monitoring (SIM). J. Chromatogr. B. 842, 43–47 (2006)CrossRefGoogle Scholar
  45. 45.
    Du, M., Ahn, D.: Simultaneous analysis of tocopherols, cholesterol, and phytosterols using gas chromatography. J. Food Sci. 67, 1696–1700 (2002)CrossRefGoogle Scholar
  46. 46.
    Yao, M., Ma, L., Humphreys, W.G., Zhu, M.: Rapid screening and characterization of drug metabolites using a multiple ion monitoring–dependent MS/MS acquisition method on a hybrid triple quadrupole-linear ion trap mass spectrometer. J. Mass Spectrom. 43, 1364–1375 (2008)CrossRefGoogle Scholar
  47. 47.
    Rozenberg, R., Ruibal-Mendieta, N.L., Petitjean, G., Cani, P., Delacroix, D.L., Delzenne, N.M., Meurens, M., Quetin-Leclercq, J., Habib-Jiwan, J.-L.: S.: Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. spelta L.) and wheat (T. aestivum L.) lipids by LC/APCI-MS. J.J.o.c. 38, 189–197 (2003)Google Scholar
  48. 48.
    Lauridsen, C., Leonard, S., Griffin, D., Liebler, D., McClure, T., Traber, M.: Quantitative analysis by liquid chromatography–tandem mass spectrometry of deuterium-labeled and unlabeled vitamin E in biological samples. Anal. Biochem. 289, 89–95 (2001)CrossRefGoogle Scholar
  49. 49.
    Zarrouk, W., Carrasco-Pancorbo, A., Zarrouk, M., Segura-Carretero, A., Fernández-Gutiérrez, A.: Multi-component analysis (sterols, tocopherols and triterpenic dialcohols) of the unsaponifiable fraction of vegetable oils by liquid chromatography–atmospheric pressure chemical ionization–ion trap mass spectrometry. Talanta. 80, 924–934 (2009)CrossRefGoogle Scholar
  50. 50.
    Zou, L., Akoh, C.C.: Identification of tocopherols, tocotrienols, and their fatty acid esters in residues and distillates of structured lipids purified by short-path distillation. J. Agric. Food Chem. 61, 238–246 (2012)CrossRefGoogle Scholar
  51. 51.
    As’wad, A.M., Sariah, M., Paterson, R., Abidin, M.Z., Lima, N.: Ergosterol analyses of oil palm seedlings and plants infected with Ganoderma. Crop Protection. 30, 1438–1442 (2011)CrossRefGoogle Scholar
  52. 52.
    Itoh, T., Tamura, T., Matsumoto, T.: Sterol composition of 19 vegetable oils. Journal of the American Oil Chemists Society. 50, 122–125 (1973)CrossRefGoogle Scholar
  53. 53.
    Ok, S.: Authentication of commercial extra virgin olive oils. J. Am. Oil Chem. Soc. 93, 489–497 (2016)CrossRefGoogle Scholar
  54. 54.
    Blekas, G., Boskou, D.: 9 Phytosterols and Frying Oils. Frying of food: oxidation, nutrient and non-nutrient antioxidants, Biologically Active Compounds and High Temperatures. 225 (2016)Google Scholar
  55. 55.
    Cañabate-Díaz, B., Carretero, A.S., Fernández-Gutiérrez, A., Vega, A.B., Frenich, A.G., Vidal, J.M., Martos, J.D.: Separation and determination of sterols in olive oil by HPLC-MS. Food Chemistry. 102, 593–598 (2007)CrossRefGoogle Scholar
  56. 56.
    Yan, Z., Lin, G., Ye, Y., Wang, Y., Yan, R.: Triterpenoid saponins profiling by adducts-targeted neutral loss triggered enhanced resolution and product ion scanning using triple quadrupole linear ion trap mass spectrometry. Anal. Chim. Acta. 819, 56–64 (2014)CrossRefGoogle Scholar
  57. 57.
    Li, Y.-Y., Wang, H., Zhao, C., Huang, Y.-Q., Tang, X., Cheung, H.-Y.: Identification and characterization of kukoamine metabolites by multiple ion monitoring triggered enhanced product ion scan method with a triple-quadruple linear ion trap mass spectrometer. J. Agric. Food Chem. 63, 10785–10790 (2015)CrossRefGoogle Scholar
  58. 58.
    Kim, B.H., Akoh, C.C.: Characteristics of structured lipid prepared by lipase-catalyzed acidolysis of roasted sesame oil and caprylic acid in a bench-scale continuous packed bed reactor. J. Agric. Food Chem. 54, 5132–5141 (2006)CrossRefGoogle Scholar
  59. 59.
    Mariod, A., Matthäus, B., Hussein, I.H.: Fatty acids, tocopherols and sterols of Cephalocroton cordofanus in comparison with sesame, cotton, and groundnut oils. J. Am. Oil Chem. Soc. 88, 1297–1303 (2011)CrossRefGoogle Scholar
  60. 60.
    Kostadinović Veličkovska, S., Brühl, L., Mitrev, S., Mirhosseini, H., Matthäus, B.: Quality evaluation of cold-pressed edible oils from Macedonia. Eur. J. Lipid Sci. Technol. 117, 2023–2035 (2015)CrossRefGoogle Scholar
  61. 61.
    Schwartz, H., Ollilainen, V., Piironen, V., Lampi, A.-M.: Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J. Food Compos. Anal. 21, 152–161 (2008)CrossRefGoogle Scholar
  62. 62.
    Ribeiro, S.A.O., Nicacio, A.E., Zanqui, A.B., Biondo, P.B.F., de Abreu-Filho, B.A., Visentainer, J.V., Gomes, S.T.M., Matsushita, M.: Improvements in the quality of sesame oil obtained by a green extraction method using enzymes. LWT-Food Science and Technology. 65, 464–470 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonCanada
  2. 2.Government of CanadaCanadian Food Inspection AgencySaskatoonCanada

Personalised recommendations