Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1813–1823 | Cite as

A Simple Printed Circuit Board–Based Ion Funnel for Focusing Low m/z Ratio Ions with High Kinetic Energies at Elevated Pressure

  • Florian SchlottmannEmail author
  • Maria Allers
  • Ansgar T. Kirk
  • Alexander Bohnhorst
  • Stefan Zimmermann
Research Article


Ion funnels are one of the key components for transferring ions from higher pressure into the vacuum. Typically, ion funnels are constructed of several different plate ring electrodes with a decreasing inner diameter where radio frequency (RF) voltages and electric DC fields are applied to the electrodes to focus and transport ion clouds. In this work, we developed and investigated a simple and low-cost ion funnel design that is based on standard printed circuit boards (PCB) with integrated planar electrodes including the signal distribution network. This ion funnel is capable of withstanding high electric fields with superimposed RF voltages due to its buried capacitors. To evaluate the ion focusing efficiency of the ion funnel, we simulated the movement of ions inside this funnel and experimentally evaluated the ion transfer. Our simulations show that a rectangular ion funnel like the PCB ion funnel has similar performance compared with conventional stacked ring funnels. Due to the hundredfold lower parasitic capacitance between the planar electrodes compared with conventional ion funnels, high RF voltage amplitudes up to 195 V and reduced electric DC field strengths up to 100 Td can be reached at a frequency of about 5 MHz. Thus, the funnel is appropriate to focus light ions at elevated pressures up to 20 mbar.

Graphical Abstract



Electrodynamic ion funnel Printed circuit board Rectangular ion funnel Low m/z ratio Low parasitic capacitance 



This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – ZI 1288/8-1.


  1. 1.
    Barber, S.: Improving PTR-ToF-MS: Implementation of a Radio Frequency Ion Funnel and an Investigation into Buffer-Gas Doping. Dissertation (2015)Google Scholar
  2. 2.
    Ferreira de Brito, J.: A Lightweight High-Sensitivity Chemical Mass Spectrometer for Organic Compounds. Dissertation (2012)Google Scholar
  3. 3.
    Kirk, A.T., Grube, D., Kobelt, T., Wendt, C., Zimmermann, S.: A high resolution high kinetic energy ion mobility spectrometer based on a low-discrimination tri-state ion shutter. Anal. Chem. 90, 5603–5611 (2018)CrossRefGoogle Scholar
  4. 4.
    Langejuergen, J., Allers, M., Oermann, J., Kirk, A.T., Zimmermann, S.: High kinetic energy ion mobility spectrometer: quantitative analysis of gas mixtures with ion mobility spectrometry. Anal. Chem. 86, 7023–7032 (2014)CrossRefGoogle Scholar
  5. 5.
    Langejuergen, J., Allers, M., Oermann, J., Kirk, A.T., Zimmermann, S.: Quantitative detection of benzene in toluene- and xylene-rich atmospheres using high-kinetic-energy ion mobility spectrometry (IMS). Anal. Chem. 86, 11841–11846 (2014)CrossRefGoogle Scholar
  6. 6.
    Ellis, A.M., Mayhew, C.A.: Proton transfer reaction mass spectrometry: principles and applications. John Wiley & Sons, Ltd, Chichester (2014)CrossRefGoogle Scholar
  7. 7.
    de Gouw, J.A., Goldan, P.D., Warneke, C., Kuster, W.C., Roberts, J.M., Marchewka, M., Bertman, S.B., Pszenny, A.A.P., Keene, W.C.: Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J. Geophys. Res. 108, 10–1 - 10-18 (2003)Google Scholar
  8. 8.
    Gouw, J. de, Warneke, C., Karl, T., Eerdekens, G., van der Veen, Carina, Fall, R.: Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom. 223-224, 365–382 (2003)Google Scholar
  9. 9.
    Eiceman, G.A., Karpas, Z., Hill, H.H.: Ion Mobility Spectrometry, 3rd edn. CRC Press, Boca Raton (2013)CrossRefGoogle Scholar
  10. 10.
    Spangler, G.E.: Characterization of the ion-sampling pinhole interface for an ionmobility spectrometer/mass spectrometer system. J. Am. Soc. Mass Spectrom. 169–191 (2001)Google Scholar
  11. 11.
    Wei, Y.: A pulsed pinhole atmospheric pressure interface for simplified mass spectrometry instrumentation with enhanced sensitivity. Rapid Commun. Mass Spectrom. 701–706 (2015)Google Scholar
  12. 12.
    Hinterberger, F.: In: CERN (ed.) Ion Optics with Electrostatic Lenses, pp. 27–44 (2006)Google Scholar
  13. 13.
    Laughlin, B.C., Mulligan, C.C., Cooks, R.G.: Atmospheric pressure ionization in a miniature mass spectrometer. Anal. Chem. 77, 2928–2939 (2005)CrossRefGoogle Scholar
  14. 14.
    Shaffer, S.A., Tang, K., Anderson, G.A., Prior, D.C., Udseth, H.R., Smith, R.D.: A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1813–1817 (1997)CrossRefGoogle Scholar
  15. 15.
    Tolmachev, A.V., Chernushevich, I.V., Dodonov, A.F., Standing, K.G.: A collisional focusing ion guide for coupling an atmospheric pressure ion source to a mass spectrometer. Phys. Rev. B. 124, 112–119 (1997)Google Scholar
  16. 16.
    Barber, S., Blake, R.S., White, I.R., Monks, P.S., Reich, F., Mullock, S., Ellis, A.M.: Increased sensitivity in proton transfer reaction mass spectrometry by incorporation of a radio frequency ion funnel. Anal. Chem. 84, 5387–5391 (2012)CrossRefGoogle Scholar
  17. 17.
    Kim, T., Udseth, H.R., Smith, R.D.: Improved ion transmission from atmospheric pressure to high vacuum using a multicapillary inlet and electrodynamic ion funnel interface. Anal. Chem. 72, 5014–5019 (2000)CrossRefGoogle Scholar
  18. 18.
    Ibrahim, Y., Tang, K., Tolmachev, A.V., Shvartsburg, A.A., Smith, R.D.: Improving mass spectrometer sensitivity using a high-pressure electrodynamic ion funnel interface. J. Am. Soc. Mass Spectrom. 17, 1299–1305 (2006)CrossRefGoogle Scholar
  19. 19.
    Kelly, R.T., Tolmachev, A.V., Page, J.S., Tang, K., Smith, R.D.: The ion funnel: theory, implementations, and applications. Mass Spectrom. Rev. 29, 294–312 (2010)Google Scholar
  20. 20.
    Albrecht, S.: Development of a highly sensitive and versatile mass spectrometer system for laboratory and atmospheric measurements. Dissertation, Forschungszentrum Jülich, Zentralbibliothek, Jülich (2014)Google Scholar
  21. 21.
    Lynn, E.C., Chung, M.C., Han, C.C.: Characterizing the transmission properties of an ion funnel. Rapid Commun. Mass Spectrom. 14, 2129–2134 (2000)CrossRefGoogle Scholar
  22. 22.
    Shaffer, S.A., Tolmachev, A., Prior, D.C., Anderson, G.A., Udseth, H.R., Smith, R.D.: Characterization of an improved electrodynamic ion funnel interface for electrospray ionization mass spectrometry. Anal. Chem. 71, 2957–2964 (1999)CrossRefGoogle Scholar
  23. 23.
    Chen, T.-C., Webb, I.K., Prost, S.A., Harrer, M.B., Norheim, R.V., Tang, K., Ibrahim, Y.M., Smith, R.D.: Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations. Anal. Chem. 87, 716–722 (2015)CrossRefGoogle Scholar
  24. 24.
    Kim, T., Tolmachev, A.V., Harkewicz, R., Prior, D.C., Anderson, G., Udseth, H.R., Smith, R.D., Bailey, T.H., Rakov, S., Futrell, J.H.: Design and implementation of a new electrodynamic ion funnel. Anal. Chem. 72, 2247–2255 (2000)CrossRefGoogle Scholar
  25. 25.
    Shaffer, S.A., Prior, D.C., Anderson, G.A., Udseth, H.R., Smith, R.D.: An ion funnel interface for improved ion focusing and sensitivity using electrospray ionization mass spectrometry. Anal. Chem. 70, 4111–4119 (1998)CrossRefGoogle Scholar
  26. 26.
    Page, J.S., Tolmachev, A.V., Tang, K., Smith, R.D.: Theoretical and experimental evaluation of the low m/z transmission of an electrodynamic ion funnel. J. Am. Soc. Mass Spectrom. 17, 586–592 (2006)CrossRefGoogle Scholar
  27. 27.
    Allers, M., Kirk, A.T., Zimmermann, S.: A simple centripetal force model for explaining the focusing effect of ion funnels. Int. J. Mass Spectrom. 432, 14–17 (2018)CrossRefGoogle Scholar
  28. 28.
    Tridas, E.M., Allemang, C., Mast, F., Anthony, J.M., Schlaf, R.: High transmission 3D printed flex-PCB-based ion funnel. J. Mass Spectrom. 50, 938–943 (2015)CrossRefGoogle Scholar
  29. 29.
    Anthony, D., Appelhans, D.A.D.: SIMION ion optics simulations at atmospheric pressure. Int. J. Mass Spectrom. 1–14 (2005)Google Scholar
  30. 30.
    Bohnhorst, A., Kirk, A.T., Zimmermann, S.: Simulation aided design of a low cost ion mobility spectrometer based on printed circuit boards. Int. J. Ion Mobil. Spec. 19, 167–174 (2016)CrossRefGoogle Scholar
  31. 31.
    Pavlik, M., Skalny, J.D.: Generation of [H3O]+.(H2O)n clusters by positive corona discharge in air. Rapid Commun. Mass Spectrom. 11, 1757–1766 (1997)CrossRefGoogle Scholar
  32. 32.
    Shahin, M.M.: Mass-spectrometric studies of corona discharges in air at atmospheric pressures. J. Chem. Phys. 45, 2600–2605 (1966)CrossRefGoogle Scholar
  33. 33.
    Sherwood Githens, J.R.: The influence of discharge chamber structure upon the initiating mechanism of the high frequency discharge. Phys. Rev. 1940, 822–828 (1940)CrossRefGoogle Scholar
  34. 34.
    Mayer, T., Borsdorf, H.: Ion transfer from an atmospheric pressure ion funnel into a mass spectrometer with different interface options: simulation-based optimization of ion transmission efficiency. Rapid Commun. Mass Spectrom. 30, 372–378 (2016)CrossRefGoogle Scholar
  35. 35.
    Kirk, A.T., Kobelt, T., Spehlbrink, H., Zimmermann, S.: A simple analytical model for predicting the detectable ion current in ion mobility spectrometry using corona discharge ionization sources. J. Am. Soc. Mass Spectrom. (2018)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement TechnologyLeibniz University HannoverHannoverGermany

Personalised recommendations