Gas-Phase Synthesis and Reactivity of Ligated Group 10 Ions in the Formal +1 Oxidation State

  • Kim Greis
  • Yang Yang
  • Allan J. Canty
  • Richard A. J. O’HairEmail author
Focus: Honoring Helmut Schwarz´s Election to the National Academy of Sciences: Research Article


Electrospray ionization of the group 10 complexes [(phen)M(O2CCH3)2] (phen=1,10-phenanthroline, M = Ni, Pd, Pt) generates the cations [(phen)M(O2CCH3)]+, whose gas-phase chemistry was studied using multistage mass spectrometry experiments in an ion trap mass spectrometer with the combination of collision-induced dissociation (CID) and ion-molecule reactions (IMR). Decarboxylation of [(phen)M(O2CCH3)]+ under CID conditions generates the organometallic cations [(phen)M(CH3)]+, which undergo bond homolysis upon a further stage of CID to generate the cations [(phen)M] in which the metal center is formally in the +1 oxidation state. In the case of [(phen)Pt(CH3)]+, the major product ion [(phen)H]+ was formed via loss of the metal carbene Pt=CH2. DFT calculated energetics for the competition between bond homolysis and M=CH2 loss are consistent with their experimentally observed branching ratios of 2% and 98% respectively. The IMR of [(phen)M] with O2, N2, H2O, acetone, and allyl iodide were examined. Adduct formation occurs for O2, N2, H2O, and acetone. Upon CID, all adducts fragment to regenerate [(phen)M], except for [(phen)Pt(OC(CH3)2)], which loses a methyl radical to form [(phen)Pt(OCCH3)]+ which upon a further stage of CID regenerates [(phen)Pt(CH3)]+ via CO loss. This closes a formal catalytic cycle for the decomposition of acetone into CO and two methyl radicals with [(phen)Pt] as catalyst. In the IMR of [(phen)M] with allyl iodide, formation of [(phen)M(CH2CHCH2)]+ was observed for all three metals, whereas for M = Pt also [(phen)Pt(I)]+ and [(phen)Pt(I)2(CH2CHCH2)]+ were observed. Finally, DFT calculated reaction energetics for all IMR reaction channels are consistent with the experimental observations.


Decarboxylation Organoplatinum Collision-induced dissociation Ion-molecule reaction Electrospray ionization Mechanism DFT calculation 



We thank the Australian Research Council for financial support DP180101187 (to RAJO and AJC). The authors gratefully acknowledge the generous allocation of computing time from the University of Tasmania and the National Computing Infrastructure (fz2). We are particularly thankful to the DAAD (ISAP program) for funding an exchange program between the Schools of Chemistry of Humboldt-Universität zu Berlin and The University of Melbourne. KG is grateful to the “Fondation Félix Chomé” for the “Bourse Chomé-Bastian” scholarship.

Supplementary material

13361_2019_2231_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1.02 mb)


  1. 1.
    Johansson Seechurn, C.C.C., Kitching, M.O., Colacot, T.J., Snieckus, V.: Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012)CrossRefGoogle Scholar
  2. 2.
    Bonney, K.J., Schoenebeck, F.: Experiment and computation: a combined approach to study the reactivity of palladium complexes in oxidation states 0 to IV. Chem. Soc. Rev. 43, 6609–6638 (2014)CrossRefGoogle Scholar
  3. 3.
    Ananikov, V.P., Zelinsky, N.D.: Nickel: the “spirited horse” of transition metal catalysis. ACS Catal. 5, 1964–1971 (2015)CrossRefGoogle Scholar
  4. 4.
    Lin, C.-Y., Power, P.P.: Complexes of Ni(I): a “rare” oxidation state of growing importance. Chem. Soc. Rev. 46, 5347–5399 (2017)CrossRefGoogle Scholar
  5. 5.
    Zimmermann, P., Limberg, C.: Activation of small molecules at nickel(I) moieties. J. Am. Chem. Soc. 139, 4233–4242 (2017)CrossRefGoogle Scholar
  6. 6.
    Balch, A.L.: Odd oxidation states of palladium and platinum. Comments Inorg. Chem. 3, 51–67 (1984)CrossRefGoogle Scholar
  7. 7.
    Simpson, Q., Sinclair, M.J.G., Lupton, D.W., Chaplin, A.B., Hooper, J.F.: Oxidative cross-coupling of boron and antimony nucleophiles via palladium(I). Org. Lett. 20, 5537–5540 (2018)CrossRefGoogle Scholar
  8. 8.
    Zuo, Z., Ahneman, D.T., Chu, L., Terrett, J.A., Doyle, A.G., MacMillan, D.W.C.: Dual catalysis. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science. 345, 437–440 (2014)CrossRefGoogle Scholar
  9. 9.
    Tellis, J.C., Kelly, C.B., Primer, D.N., Jouffroy, M., Patel, N.R., Molander, G.A.: Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3-sp2 cross-coupling. Acc. Chem. Res. 49, 1429–1439 (2016)CrossRefGoogle Scholar
  10. 10.
    Matsui, J.K., Lang, S.B., Heitz, D.R., Molander, G.A.: Photoredox-mediated routes to radicals: the value of catalytic radical generation in synthetic methods development. ACS Catal. 7, 2563–2575 (2017)CrossRefGoogle Scholar
  11. 11.
    Menges, F.S., Craig, S.M., Tötsch, N., Bloomfield, A., Ghosh, S., Krüger, H.J., Johnson, M.A.: Capture of CO2 by a cationic nickel(I) complex in the gas phase and characterization of the bound, activated CO2 molecule by cryogenic ion vibrational predissociation spectroscopy. Angew. Chem. Int. Ed. 55, 1282–1285 (2016)CrossRefGoogle Scholar
  12. 12.
    Craig, S.M., Menges, F.S., Johnson, M.A.: Application of gas phase cryogenic vibrational spectroscopy to characterize the CO2, CO, N2 and N2O interactions with the open coordination site on a Ni(I) macrocycle using dual cryogenic ion traps. J. Mol. Spectrosc. 332, 117–123 (2017)CrossRefGoogle Scholar
  13. 13.
    Yalcin, T., Wang, J., Wen, D., Harrison, A.G.: C-C and C-H bond activation in the fragmentation of the [M + Ni]+ adducts of aliphatic amino acids. J. Am. Soc. Mass Spectrom. 8, 749–755 (1997)CrossRefGoogle Scholar
  14. 14.
    Mó, O., Yáñez, M., Salpin, J.-Y., Tortajada, J.: Thermochemistry, bonding, and reactivity of Ni+ and Ni2+ in the gas phase. Mass Spectrom. Rev. 26, 474–516 (2007)CrossRefGoogle Scholar
  15. 15.
    O’Hair, R.A.J.: Mass spectrometry based studies of gas phase metal catalyzed reactions. Int. J. Mass Spectrom. 377, 121–129 (2015)CrossRefGoogle Scholar
  16. 16.
    Eller, K., Schwarz, H.: Organometallic chemistry in the gas phase. Chem. Rev. 91, 1121–1177 (1991)CrossRefGoogle Scholar
  17. 17.
    Böhme, D.K., Schwarz, H.: Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005)CrossRefGoogle Scholar
  18. 18.
    Schwarz, H.: Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal. Sci. Technol. 7, 4302–4314 (2017)CrossRefGoogle Scholar
  19. 19.
    Schwarz, H.: Chemistry with methane: concepts rather than recipes. Angew. Chem. Int. Ed. 50, 10096–10115 (2011)CrossRefGoogle Scholar
  20. 20.
    Schwarz, H.: How and why do cluster size, charge state, and ligands affect the course of metal-mediated gas-phase activation of methane? Isr. J. Chem. 54, 1413–1431 (2014)CrossRefGoogle Scholar
  21. 21.
    Schwarz, H.: Remote functionalization of C-H and C-C bonds by “naked” transition-metal ions (Cosi Fan Tutte). Acc. Chem. Res. 22, 282–287 (1989)CrossRefGoogle Scholar
  22. 22.
    Schröder, D., Shaik, S., Schwarz, H.: Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145 (2000)CrossRefGoogle Scholar
  23. 23.
    Vikse, K.L., McIndoe, J.S.: Mechanistic insights from mass spectrometry: examination of the elementary steps of catalytic reactions in the gas phase. Pure Appl. Chem. 87, 361–377 (2015)CrossRefGoogle Scholar
  24. 24.
    Vikse, K.L., Ahmadi, Z., McIndoe, J.S.: The application of electrospray ionization mass spectrometry to homogeneous catalysis. Coord. Chem. Rev. 279, 96–114 (2014)CrossRefGoogle Scholar
  25. 25.
    Heinemann, C., Wesendrup, R., Schwarz, H.: Pt+-mediated activation of methane: theory and experiment. Chem. Phys. Lett. 239, 75–83 (1995)CrossRefGoogle Scholar
  26. 26.
    Božović, A., Feil, S., Koyanagi, G.K., Viggiano, A.A., Zhang, X., Schlangen, M., Schwarz, H., Bohme, D.K.: Conversion of methane to methanol: nickel, palladium, and platinum (d9) cations as catalysts for the oxidation of methane by ozone at room temperature. Chem. Eur. J. 16, 11605–11610 (2010)CrossRefGoogle Scholar
  27. 27.
    Georgiadis, R., Fisher, E.R., Armentrout, P.B.: Neutral and ionic metal-hydrogen and metal-carbon bond energies: reactions of cobalt, nickel, and copper with ethane, propane, methylpropane, and dimethylpropane. J. Am. Chem. Soc. 111, 4251–4262 (1989)CrossRefGoogle Scholar
  28. 28.
    van Koppen, P.A.M., Bowers, M.T., Fisher, E.R., Armentrout, P.B.: Relative energetics of C-H and C-C Bond activation of alkanes: reactions of Ni+ and Fe+ with propane on the lowest energy (adiabatic) potential energy surfaces. J. Am. Chem. Soc. 116, 3780–3791 (1994)CrossRefGoogle Scholar
  29. 29.
    Zhang, X.-G., Liyanage, R., Armentrout, P.B.: Potential energy surface for activation of methane by Pt+: a combined guided ion beam and DFT study. J. Am. Chem. Soc. 123, 5563–5575 (2001)CrossRefGoogle Scholar
  30. 30.
    Mansell, A., Theis, Z., Gutierrez, M.G., Faza, O.N., Lopez, C.S., Bellert, D.J.: Submerged barriers in the Ni+ assisted decomposition of propionaldehyde. J. Phys. Chem. A. 120, 2275–2284 (2016)CrossRefGoogle Scholar
  31. 31.
    Robinson, P.S.D., Khairallah, G.N., da Silva, G., Lioe, H., O'Hair, R.A.J.: Gold-mediated C-I bond activation of iodobenzene. Angew. Chem. Int. Ed. 51, 3812–3817 (2012)CrossRefGoogle Scholar
  32. 32.
    Luman, C.R., Castellano, F.N.: Phenanthroline ligands. In: McCleverty, J.A., Meyer, T.J. (eds.) Comprehensive coordination chemistry II, pp. 25–39. Elsevier, Amsterdam (2003)CrossRefGoogle Scholar
  33. 33.
    O’Hair, R.A.J., Rijs, N.J.: Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions. Acc. Chem. Res. 48, 329–340 (2015)CrossRefGoogle Scholar
  34. 34.
    Woolley, M.J., Khairallah, G.N., Donnelly, P.S., O'Hair, R.A.J.: Nitrogen adduction by three coordinate group 10 organometallic cations: platinum is favoured over nickel and palladium. Rapid Commun. Mass Spectrom. 25, 2083–2088 (2011)CrossRefGoogle Scholar
  35. 35.
    Woolley, M., Ariafard, A., Khairallah, G.N., Kwan, K.H.-Y., Donnelly, P.S., White, J.M., Canty, A.J., Yates, B.F., O’Hair, R.A.J.: Decarboxylative-coupling of allyl acetate catalyzed by group 10 organometallics, [(phen)M(CH3)]+. J. Org. Chem. 79, 12056–12069 (2014)CrossRefGoogle Scholar
  36. 36.
    Woolley, M.J., Khairallah, G.N., da Silva, G., Donnelly, P.S., Yates, B.F., O’Hair, R.A.J.: Role of the metal, ligand, and alkyl/aryl group in the hydrolysis reactions of group 10 organometallic cations [(L)M(R)]+. Organometallics. 32, 6931–6944 (2013)CrossRefGoogle Scholar
  37. 37.
    Woolley, M., Khairallah, G.N., da Silva, G., Donnelly, P.S., O’Hair, R.A.J.: Direct versus water-mediated protodecarboxylation of acetic acid catalyzed by group 10 carboxylates, [(phen)M(O2CCH3)]+. Organometallics. 33, 5185–5197 (2014)CrossRefGoogle Scholar
  38. 38.
    Noor, A., Li, J., Khairallah, G.N., Li, Z., Ghari, H., Canty, A.J., Ariafard, A., Donnelly, P.S., O'Hair, R.A.J.: A one-pot route to thioamides discovered by gas-phase studies: palladium-mediated CO2 extrusion followed by insertion of isothiocyanates. Chem. Commun. 53, 3854–3857 (2017)CrossRefGoogle Scholar
  39. 39.
    Yang, Y., Noor, A., Canty, A.J., Ariafard, A., Donnelly, P.S., O’Hair, R.A.J.: Synthesis of amidines by palladium-mediated CO2 extrusion followed by insertion of carbodiimides: translating mechanistic studies to develop a one-pot method. Organometallics. 38, 424–435 (2019)CrossRefGoogle Scholar
  40. 40.
    Zhugralin, A.R., Kobylianskii, I.J., Chen, P.: Experimental gas-phase and in silico investigation of β-methyl elimination from cationic palladium alkyl species. Organometallics. 34, 1301–1306 (2015)CrossRefGoogle Scholar
  41. 41.
    Parker, M.L., Gronert, S.: Investigating reduced metal species via sequential ion/ion and ion/molecule reactions: the reactions of transition metal phenanthrolines with allyl iodide. Int. J. Mass Spectrom. 418, 73–78 (2017)CrossRefGoogle Scholar
  42. 42.
    Halle, L.F., Crowe, W.E., Armentrout, P.B., Beauchamp, J.L.: Reactions of atomic cobalt ions with aldehydes and ketones. Observation of decarbonylation processes leading to formation of metal alkyls and metallacycles in the gas phase. Organometallics. 3, 1694–1706 (1984)CrossRefGoogle Scholar
  43. 43.
    Tolbert, M.A., Mandich, M.L., Halle, L.F., Beauchamp, J.L.: Activation of alkanes by ruthenium, rhodium, and palladium ions in the gas phase: striking differences in reactivity of first- and second-row metal ions. J. Am. Chem. Soc. 108, 5675–5683 (1986)CrossRefGoogle Scholar
  44. 44.
    Carpenter, C.J., van Koppen, P.A.M., Bowers, M.T.: Details of potential energy surfaces involving C-C bond activation: reactions of Fe+, Co+, and Ni+ with acetone. J. Am. Chem. Soc. 117, 10976–10985 (1995)CrossRefGoogle Scholar
  45. 45.
    Chen, X., Guo, W., Zhao, L., Fu, Q.: Theoretical survey of the potential energy surface of Ni+ + acetone reaction. Chem. Phys. Lett. 432, 27–32 (2006)CrossRefGoogle Scholar
  46. 46.
    Dee, S.J., Castleberry, V.A., Villarroel, O.J., Laboren, I.E., Frey, S.E., Ashley, D., Bellert, D.J.: Rate-limiting step in the low-energy unimolecular decomposition reaction of Ni+• acetone into Ni+CO + ethane. J. Phys. Chem. A. 113, 14074–14080 (2009)CrossRefGoogle Scholar
  47. 47.
    Greis, K., Canty, A.J., O’Hair, R.A.J.: Gas-phase reactions of the group 10 organometallic cations, [(phen)M(CH3)]+ with acetone: only platinum promotes a catalytic cycle via the enolate [(phen)Pt(OC(CH2)CH3)]+. Z. Phys. Chem. (in press).
  48. 48.
    Thum, C.C.L., Khairallah, G.N., O’Hair, R.A.J.: Gas-phase formation of the Gomberg-Bachmann magnesium ketyl. Angew. Chem. Int. Ed. 47, 9118–9121 (2008)CrossRefGoogle Scholar
  49. 49.
    Vikse, K.L., Zavras, A., Thomas, T.H., Ariafard, A., Khairallah, G.N., Canty, A.J., Yates, B.F., O’Hair, R.A.J.: Prying open a reactive site for allylic arylation by phosphine-ligated geminally diaurated aryl gold complexes. Organometallics. 34, 3255–3263 (2015)CrossRefGoogle Scholar
  50. 50.
    Rijs, N.J., Yoshikai, N., Nakamura, E., O’Hair, R.A.J.: Gas-phase reactivity of group 11 dimethylmetallates with allyl iodide. J. Am. Chem. Soc. 134, 2569–2580 (2012)CrossRefGoogle Scholar
  51. 51.
    Price, J.H., Williamson, A.N., Schramm, R.F., Wayland, B.B.: Palladium(II) and platinum(II) alkyl sulfoxide complexes. Examples of sulfur-bonded, mixed sulfur- and oxygen-bonded, and totally oxygen-bonded complexes. Inorg. Chem. 11, 1280–1284 (1972)CrossRefGoogle Scholar
  52. 52.
    Fanizzi, F.P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F., Zanello, P.: Steric crowding and redox reactivity in platinum(II) and platinum(IV) complexes containing substituted 1,10-phenanthrolines. Inorg. Chem. 35, 3173–3182 (1996)CrossRefGoogle Scholar
  53. 53.
    Soro, B., Stoccoro, S., Minghetti, G., Zucca, A., Cinellu, M.A., Gladiali, S., Manassero, M., Sansoni, M.: Synthesis of the first C-2 cyclopalladated derivatives of 1,3-Bis(2-pyridyl)benzene. Crystal structures of [Hg(N-C-N)Cl], [Pd(N-C-N)Cl], and [Pd2(N-C-N)2(μ-OAc)]2 [Hg2Cl6]. Catalytic activity in the Heck reaction. Organometallics. 24, 53–61 (2005)CrossRefGoogle Scholar
  54. 54.
    Donald, W.A., McKenzie, C.J., O'Hair, R.A.J.: C-H bond activation of methanol and ethanol by a high-spin FeIVO biomimetic complex. Angew. Chem. Int. Ed. 50, 8379–8383 (2011)CrossRefGoogle Scholar
  55. 55.
    Lam, A.K.Y., Li, C., Khairallah, G., Kirk, B.B., Blanksby, S.J., Trevitt, A.J., Wille, U., O'Hair, R.A.J., da Silva, G.: Gas-phase reactions of aryl radicals with 2-butyne: experimental and theoretical investigation employing the N-methyl-pyridinium-4-yl radical cation. Phys. Chem. Chem. Phys. 14, 2417–2426 (2012)CrossRefGoogle Scholar
  56. 56.
    Donald, W.A., Khairallah, G.N., O'Hair, R.A.J.: The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 24, 811–815 (2013)CrossRefGoogle Scholar
  57. 57.
    Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox: Gaussian, Inc., Wallingford CT, 2016Google Scholar
  58. 58.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts. 120, 215–241 (2008)CrossRefGoogle Scholar
  59. 59.
    Andrae, D., Huermann, U., Dolg, M., Stoll, H., Preu, H.: Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta. 77, 123–141 (1990)CrossRefGoogle Scholar
  60. 60.
    Dolg, M., Wedig, U., Stoll, H., Preuss, H.: Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872 (1987)CrossRefGoogle Scholar
  61. 61.
    Petersson, G.A., Al-Laham, M.A.: A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991)CrossRefGoogle Scholar
  62. 62.
    Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox: Gaussian, Inc., Wallingford CT, 2016Google Scholar
  63. 63.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  64. 64.
    Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)CrossRefGoogle Scholar
  65. 65.
    Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)CrossRefGoogle Scholar
  66. 66.
    McLean, A.D., Chandler, G.S.: Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z =11–18. J. Chem. Phys. 72, 5639–5648 (1980)CrossRefGoogle Scholar
  67. 67.
    Neese, F.: Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018)CrossRefGoogle Scholar
  68. 68.
    Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)CrossRefGoogle Scholar
  69. 69.
    Goerigk, L., Grimme, S.: Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7, 291–309 (2011)CrossRefGoogle Scholar
  70. 70.
    Kozuch, S., Martin, J.M.L.: DSD-PBEP86: in search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys. 13, 20104–20107 (2011)CrossRefGoogle Scholar
  71. 71.
    Weigend, F., Häser, M., Patzelt, H., Ahlrichs, R.: RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143–152 (1998)CrossRefGoogle Scholar
  72. 72.
    Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)CrossRefGoogle Scholar
  73. 73.
    Mehta, N., Casanova-Páez, M., Goerigk, L.: Semi-empirical or non-empirical double-hybrid density functionals: which are more robust? Phys. Chem. Chem. Phys. 20, 23175–23194 (2018)CrossRefGoogle Scholar
  74. 74.
    McLuckey, S.A., Goeringer, D.E.: Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997)CrossRefGoogle Scholar
  75. 75.
    Dau, P.D., Armentrout, P.B., Michelini, M.C., Gibson, J.K.: Activation of carbon dioxide by a terminal uranium-nitrogen bond in the gas-phase: a demonstration of the principle of microscopic reversibility. Phys. Chem. Chem. Phys. 18, 7334–7340 (2016)CrossRefGoogle Scholar
  76. 76.
    Butschke, B., Schwarz, H.: Mechanistic study on the gas-phase generation of “rollover”-cyclometalated [M(bipy−H)]+ (M = Ni, Pd, Pt). Organometallics. 29, 6002–6011 (2010)CrossRefGoogle Scholar
  77. 77.
    Perera, M., Metz, R.B., Kostko, O., Ahmed, M.: Vacuum ultraviolet photoionization studies of PtCH2 and H-Pt-CH3: a potential energy surface for the Pt+CH4 reaction. Angew. Chem. Int. Ed. 52, 922–925 (2013)CrossRefGoogle Scholar
  78. 78.
    Goerigk, L., Hansen, A., Bauer, C., Ehrlich, S., Najibi, A., Grimme, S.: A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19, 32184–32215 (2017)CrossRefGoogle Scholar
  79. 79.
    de Bruin, B., Gualco, P., Paul, N.D.: Redox non-innocent ligands. In: Stradiotto, M., Lundgren, R.J. (eds.) Ligand Design in Metal Chemistry, vol. 33, pp. 176–204. John Wiley & Sons, Ltd, Chichester (2016)CrossRefGoogle Scholar
  80. 80.
    Ferreira, R.B., Murray, L.J.: Group 10 and 11 transition metal-dinitrogen complexes. In: Nishibayashi, Y. (ed.) Transition metal-dinitrogen complexes: preparation and reactivity, Chapter 8, pp. 403–423. Wiley-VCH, Weinheim (2019)CrossRefGoogle Scholar
  81. 81.
    Bond, G.C.: Relativistic phenomena in the chemistry of the platinum group metals. Effects on coordination and chemisorption in homogeneous and heterogenous catalysis. Platinum Metal Rev. 44, 146–155 (2000)Google Scholar
  82. 82.
    Landis, C.R., Morales, C.M., Stahl, S.S.: Insights into the spin-forbidden reaction between L2Pd(0) and molecular oxygen. J. Am. Chem. Soc. 126, 16302–16303 (2004)CrossRefGoogle Scholar
  83. 83.
    Stahl, S.S., Thorman, J.L., Nelson, R.C., Kozee, M.A.: Oxygenation of nitrogen-coordinated palladium(0): synthetic, structural, and mechanistic studies and implications for aerobic oxidation catalysis. J. Am. Chem. Soc. 123, 7188–7189 (2001)CrossRefGoogle Scholar
  84. 84.
    Gómez-Gallego, M., Sierra, M.A.: Kinetic isotope effects in the study of organometallic reaction mechanisms. Chem. Rev. 111, 4857–4963 (2011)CrossRefGoogle Scholar
  85. 85.
    Yu, D., Tian, Z.-Y., Wang, Z., Liu, Y.-X., Zhou, L.: Experimental and theoretical study on acetone pyrolysis in a jet-stirred reactor. Fuel. 234, 1380–1387 (2018)CrossRefGoogle Scholar
  86. 86.
    Trentelman, K.A., Kable, S.H., Moss, D.B., Houston, P.L.: Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions. J. Chem. Phys. 91, 7498–7513 (1989)CrossRefGoogle Scholar
  87. 87.
    Lesslie, M., Yang, Y., Canty, A.J., Piacentino, E., Berthias, F., Maitre, P., Ryzhov, V., O'Hair, R.A.J.: Ligand-induced decarbonylation in diphosphine-ligated palladium acetates [CH3CO2Pd((PR2)2CH2)]+ (R = Me and Ph). Chem. Commun. 54, 346–349 (2018)CrossRefGoogle Scholar
  88. 88.
    Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2008)CrossRefGoogle Scholar
  89. 89.
    Knoll, H., Stich, R., Hennig, H., Stufkens, D.J.: Spectroscopic studies on the mechanism of photolysis of Pt(N3)2(P(C6H5)3)2. Inorg. Chim. Acta. 178, 71–76 (1990)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia
  2. 2.Institut für ChemieHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany
  4. 4.School of Natural Sciences – ChemistryUniversity of TasmaniaHobartAustralia

Personalised recommendations