Advertisement

Gas-Phase Reactivity of Carbonate Ions with Sulfur Dioxide: an Experimental Study of Clusters Reactions

  • Anna TroianiEmail author
  • Chiara Salvitti
  • Giulia de PetrisEmail author
Focus: Honoring Helmut Schwarz's Election to the National Academy of Sciences: Research Article

Abstract

The reactivity of carbonate cluster ions with sulfur dioxide has been investigated in the gas phase by mass spectrometric techniques. SO2 promotes the displacement of carbon dioxide from carbonate clusters through a stepwise mechanism, leading to the quantitative conversion of the carbonate aggregates into the corresponding sulfite cluster ions. The kinetic study of the reactions of positive, negative, singly, and doubly charged ions reveals very fast and efficient processes for all the carbonate ions.

Keywords

Cluster reactivity Carbonates Sulfur dioxide Ion-molecule reactions 

Notes

Acknowledgements

The financial support by “Sapienza” University of Rome is gratefully acknowledged. The authors thank Stefania Recaldin for helpful assistance.

Supplementary material

13361_2019_2228_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1831 kb)

References

  1. 1.
    Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate change, 3th edn. John Wiley and Sons, Inc., New York (2016)Google Scholar
  2. 2.
    Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., Crutzen, P.J.: Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res.-Atmos. 101, 22869–22889 (1996)CrossRefGoogle Scholar
  3. 3.
    Bellouin, N., Boucher, O., Haywood, J., Reddy, M.S.: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature. 438, 1138–1141 (2005)CrossRefGoogle Scholar
  4. 4.
    Yu, H., Kaufman, Y.J., Chin, M., Feingold, G., Remer, L.A., Anderson, T.L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M.S., Schulz, M., Takemura, T., Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 6, 613–666 (2006)CrossRefGoogle Scholar
  5. 5.
    Scanza, R.A., Mahowald, N., Ghan, S., Zender, C.S., Kok, J.F., Liu, X., Zhang, Y., Albani, S.: Modeling dust as component minerals in the community atmosphere model: development of framework and impact on radiative forcing. Atmos. Chem. Phys. 15, 537–561 (2015)CrossRefGoogle Scholar
  6. 6.
    Lohmann, U., Feichter, J.: Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)CrossRefGoogle Scholar
  7. 7.
    DeMott, P.J., Sassen, K., Poellot, M.R., Baumgardner, D., Rogers, D.C., Brooks, S.D., Prenni, A.J., Kreidenweis, S.M.: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett. 30, 1732–1735 (2003)CrossRefGoogle Scholar
  8. 8.
    Stern, D.I.: Global sulfur emissions from 1850 to 2000. Chemosphere. 58, 163–175 (2005)CrossRefGoogle Scholar
  9. 9.
    Duparta, Y., Kinga, S.M., Nekat, B., Nowak, A., Wiedensohler, A., Herrmann, H., David, G., Thomas, B., Miffre, A., Rairoux, P., D’Anna, B., George, C.: Mineral dust photochemistry indices nucleation events in the presence of SO2. Proc. Natl. Acad. Sci. 109, 20842–20847 (2012)CrossRefGoogle Scholar
  10. 10.
    Curtius, J.: Nucleation of atmospheric aerosol particles. C. R. Phys. 7, 1027–1045 (2006)CrossRefGoogle Scholar
  11. 11.
    Rattigan, O.V., Boniface, J., Swartz, E., Davidovits, P., Jayne, J.T., Kolb, C.E., Worsnop, D.R.: Uptake of gas-phase SO2 in aqueous sulfuric acid: oxidation by H2O2, O3 and HONO. J. Geophys. Res.-Atmos. 105, 65–78 (2000)CrossRefGoogle Scholar
  12. 12.
    Zuo, Y., Hoigne, J.: Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water. Science. 260, 71–73 (1993)CrossRefGoogle Scholar
  13. 13.
    Chandler, A.S., Choularton, T.W., Dollard, G.J., Eggleton, A.E.J., Gay, M.J., Hill, T.A., Jones, B.M.R., Tyler, B.J., Bandy, B.J., Penkett, S.A.: Measurements of H2O2 and SO2 in clouds and estimates of their reaction rate. Nature. 336, 562–565 (1988)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang, Q., Philip, S., Xie, Y.: Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J. Geophys. Res.-Atmos. 119(17), 10425–10440 (2014)CrossRefGoogle Scholar
  15. 15.
    Zheng, B., Zhang, Q., Zhang, Y., He, K.B., Wang, K., Zheng, G.J., Duan, F.K., Ma, Y.L., Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys. 15, 2031–2049 (2015)CrossRefGoogle Scholar
  16. 16.
    Ullerstam, M., Vogt, R., Langer, S., Ljungstr¨om, E.: The kinetics and mechanism of SO2 oxidation by O3 on mineral dust. Phys. Chem. Chem. Phys. 4, 4694–4699 (2002)CrossRefGoogle Scholar
  17. 17.
    Laskin, A., Gaspar, D.J., Wang, W., Hunt, S.W., Cowin, J.P., Colson, S.D., Finlayson-Pitts, B.J.: Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science. 301, 340–344 (2003)CrossRefGoogle Scholar
  18. 18.
    Hung, H.M., Hoffmann, M.R.: Oxidation of gas-phase SO2 on the surfaces of acidic microdroplets: implications for sulfate and sulfate radical anion formation in the atmospheric liquid phase. Environ. Sci. Technol. 49, 13768–13776 (2015)CrossRefGoogle Scholar
  19. 19.
    Usher, C.R., Al-Hosney, H., Carlos-Cuellar, S., Grassian, V.H.: A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. J. Geophys. Res. 107, 4713–4721 (2002)CrossRefGoogle Scholar
  20. 20.
    Hu, G., Dam-Johansen, K., Wedel, S., Hansen, J.P.: Review of the direct sulfation reaction of limestone. Prog. Energy Combust. Sci. 32, 386–407 (2006)CrossRefGoogle Scholar
  21. 21.
    McIlroy, R.A., Atwood, G.A., Major, C.J.: Absorption of sulfur dioxide by molten carbonates. Environ. Sci. Technol. 7, 1022–1028 (1973)CrossRefGoogle Scholar
  22. 22.
    Krebs, T., Nathanson, G.M.: Reactive collisions of sulfur dioxide with molten carbonates. Proc. Natl. Acad. Sci. 107, 6622–6627 (2010)CrossRefGoogle Scholar
  23. 23.
    Fehsenfeld, F.C., Schmeltekopf, A.L., Schiff, H.I., Ferguson, E.E.: Laboratory measurements of negative ion reactions of atmospheric interest. Planet. Space Sci. 15, 373–379 (1967)CrossRefGoogle Scholar
  24. 24.
    Albritton, D.L., Dotan, I., Streit, G.E., Fahey, D.W., Fehsenfeld, F.C., Ferguson, E.E.: Energy dependence of the O transfer reactions of O3 and CO3 with NO and SO2. J. Chem. Phys. 78, 6614–6619 (1983)CrossRefGoogle Scholar
  25. 25.
    Seeley, J.V., Morris, R.A., Viggiano, A.A.: Rate constants for the reactions of CO3 (H2O)n=0-5 + SO2: implications for CIMS detection of SO2 detection. Geophys. Res. Lett. 24, 1379–1382 (1997)CrossRefGoogle Scholar
  26. 26.
    Miller, T.M., Friedman, J.F., Williamson, J.S., Viggiano, A.A.: Rate constants for the reactions of CO3 and O3 with SO2 from 300 to 1440 K. J. Chem. Phys. 124, 144305–144305 (2006)CrossRefGoogle Scholar
  27. 27.
    Castleman Jr., A.W.: Cluster structure and reactions: gaining insights into catalytic processes. Catal. Lett. 141, 1243–1253 (2011)CrossRefGoogle Scholar
  28. 28.
    Ertl, G.: Reactions at surfaces: from atoms to complexity. Angew. Chem. Int. Ed. 47, 3524–3535 (2008)CrossRefGoogle Scholar
  29. 29.
    Schlangen, M., Schwarz, H.: Effects of ligands, cluster size, and charge state in gas-phase catalysis: a happy marriage of experimental and computational studies. Catal. Lett. 142, 1265–1278 (2012)CrossRefGoogle Scholar
  30. 30.
    Schwarz, H.: How and why do cluster size, charge state, and ligands affect the course of metal-mediated gas-phase activation of methane? Isr. J. Chem. 54, 1413–1431 (2014)CrossRefGoogle Scholar
  31. 31.
    Feyel, S., Schroder, D., Schwarz, H.: Pronounced cluster-size effects: gas-phase reactivity of bare vanadium cluster cations Yn + (n = 1-7) toward methanol. J. Phys. Chem. A. 113, 5625–5632 (2009)CrossRefGoogle Scholar
  32. 32.
    Schlangen, M., Schwarz, H.: Probing elementary steps of nickel-mediated bond activation in gas-phase reactions: ligand- and cluster-size effects. J. Catal. 284, 126–137 (2011)CrossRefGoogle Scholar
  33. 33.
    Zhang, X., Schwarz, H.: Generation of gas-phase nanosized vanadium oxide clusters from a mononuclear precursor by solution nucleation and electrospray ionization. Chem. Eur. J. 16, 1163–1167 (2010)CrossRefGoogle Scholar
  34. 34.
    Castleman, A.W.j., Keesee, R.G.: Gas-phase clusters: spanning the states of matter. Science. 241, 36–42 (1988)CrossRefGoogle Scholar
  35. 35.
    Böhme, D.K., Schwarz, H.: Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005)CrossRefGoogle Scholar
  36. 36.
    Schröder, D., Schwarz, H.: Gas-phase activation of methane by ligated transition-metal cations. Proc. Natl. Acad. Sci. 105, 18114–18119 (2008)CrossRefGoogle Scholar
  37. 37.
    Li, J., Zhou, S., Zhang, J., Schlangen, M., Usharani, D., Shaik, S., Schwarz, H.: Mechanistic variants in gas-phase metal-oxide mediated activation of methane at ambient conditions. J. Am. Chem. Soc. 138, 11368–11377 (2016)CrossRefGoogle Scholar
  38. 38.
    Schwarz, H.: Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Cat. Sci. Technol. 7, 4302–4314 (2017)CrossRefGoogle Scholar
  39. 39.
    Geng, C., Li, J., Weiske, T., Schwarz, H.: Ta2 +-mediated ammonia synthesis from N2 and H2 at ambient temperature. Proc. Natl. Acad. Sci. 115, 11680–11687 (2018)CrossRefGoogle Scholar
  40. 40.
    Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Effective redox reactions by chromium oxide anions: sulfur dioxide oxidation in the gas phase. Int. J. Mass Spectrom. 436, 18–22 (2019)CrossRefGoogle Scholar
  41. 41.
    Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Vanadium hydroxide cluster ions in the gas phase: bond-forming reactions of doubly-charged negative ions by SO2 promoted V−O activation. Chem. Eur. J. 23, 11752–11756 (2017)CrossRefGoogle Scholar
  42. 42.
    Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Sulphur dioxide cooperation in hydrolysis reactions of vanadium oxide and hydroxide cluster dianions. New J. Chem. 42, 4008–4016 (2018)CrossRefGoogle Scholar
  43. 43.
    de Petris, G., Troiani, A., Rosi, M., Angelini, G., Ursini, O.: Methane activation by metal-free radical cations: experimental insight into the reaction intermediate. Chem. Eur. J. 15, 4248–4252 (2009)CrossRefGoogle Scholar
  44. 44.
    de Petris, G., Cartani, A., Troiani, A., Angelini, G., Ursini, O.: Water activation by SO2 + ions: an effective source of OH radicals. Phys. Chem. Chem. Phys. 11, 9976–9978 (2009)CrossRefGoogle Scholar
  45. 45.
    de Petris, G., Cartani, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem. 17, 112–115 (2011)CrossRefGoogle Scholar
  46. 46.
    de Petris, G., Cartani, A., Troiani, A., Barone, V., Cimino, P., Angelini, G., Ursini, O.: Double C-H activation of ethane by metal-free SO2 ·+ radical cations. Chem. Eur. J. 16, 6234–6242 (2010)CrossRefGoogle Scholar
  47. 47.
    Troiani, A., Rosi, M., Salvitti, C., de Petris, G.: The oxidation of sulfur dioxide by single and double oxygen transfer paths. ChemPhysChem. 15, 2723–2731 (2014)CrossRefGoogle Scholar
  48. 48.
    Cacace, F., Cipollini, R., de Petris, G., Rosi, M., Troiani, A.: A new sulfur oxide, OSOSO, and its cation, likely present in the Io's atmosphere: detection and characterization by mass spectrometric and theoretical methods. J. Am. Chem. Soc. 123, 478–484 (2001)CrossRefGoogle Scholar
  49. 49.
    Cacace, F., de Petris, G., Pepi, F., Rosi, M., Troiani, A.: Ionization of ozone/chlorofluorocarbon mixtures in atmospheric gases: formation and remarkable dissociation of [CHXYO3]+ complexes (X = H, Cl, F; Y= Cl, F). Chem. Eur. J. 6, 2572–2581 (2000)CrossRefGoogle Scholar
  50. 50.
    Cacace, F., de Petris, G., Pepi, F., Troiani, A.: Direct experimental evidence for the H2O+O2 charge transfer complex: crucial support to atmospheric photonucleation theory. Angew. Chem. Int. Ed. 39, 367–369 (2000)CrossRefGoogle Scholar
  51. 51.
    Bartmess, J.E., Georgiadis, R.M.: Empirical methods for determination of ionization gauge relative sensitivities for different gases. Vacuum. 33, 149 (1983)CrossRefGoogle Scholar
  52. 52.
    Kuzmic, P.: Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996)CrossRefGoogle Scholar
  53. 53.
    Hao, C., March, R.E.: Electrospray ionization tandem mass spectrometric study of salt cluster ions: part 2- salts of polyatomic acid groups and of multivalent metals. J. Mass Spectrom. 36, 509–521 (2001)CrossRefGoogle Scholar
  54. 54.
    Dean, P.A.W.: The not-so-simple coordination chemistry of alkali-metal cations Li+, Na+ and K+ with one carbonate anion: a study using density functional and atoms in molecules theories. Inorg. Chim. Acta. 469, 245–254 (2018)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Dipartimento di Chimica e Tecnologie del Farmaco“Sapienza” University of RomeRomeItaly

Personalised recommendations