Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1631–1642 | Cite as

ETD-Cleavable Linker for Confident Cross-linked Peptide Identifications

  • Bingqing Zhao
  • Colin P. Reilly
  • James P. ReillyEmail author
Research Article

Abstract

Peptide cross-links formed using the homobifunctional-linker diethyl suberthioimidate (DEST) are shown to be ETD-cleavable. DEST has a spacer arm consisting of a 6-carbon alkyl chain and it cleaves at the amidino groups created upon reaction with primary amines. In ETD MS2 spectra, DEST cross-links can be recognized based on mass pairs consisting of peptide-NH2 and peptide+linker+NH3 ions, and backbone cleavages are more equally distributed over the two constituent peptides compared with collisional activation. Dead ends that are often challenging to distinguish from cross-links are diagnosed by intense reporter ions. ETD mass pairs can be used in MS3 experiments to confirm cross-link identifications. These features provide a simple but reliable approach to identify cross-links that should facilitate studies of protein complexes.

Keywords

Cross-linking Electron transfer dissociation 

Notes

Acknowledgements

We would like to thank Dr. Jonathan Meek for the spectrum plotting program. This work was supported by the National Institutes of Health grants R01 GM103725 and U54 GM074807. It was partially funded by the Indiana University Vice Provost for Research through the Faculty Research Support Program.

Supplementary material

13361_2019_2227_MOESM1_ESM.docx (721 kb)
ESM 1 (DOCX 721 kb)

References

  1. 1.
    Young, M.M., Tang, N., Hempel, J.C., Oshiro, C.M., Taylor, E.W., Kuntz, I.D., Gibson, B.W., Dollinger, G.: High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 97, 5802–5806 (2000)CrossRefGoogle Scholar
  2. 2.
    Sinz, A.: Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom. Rev. 25, 663–682 (2006)CrossRefGoogle Scholar
  3. 3.
    Leitner, A., Walzthoeni, T., Kahraman, A., Herzog, F., Rinner, O., Beck, M., Aebersold, R.: Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol. Cell. Proteomics. 9, 1634–1649 (2010)CrossRefGoogle Scholar
  4. 4.
    Merkley, E.D., Cort, J.R., Adkins, J.N.: Cross-linking and mass spectrometry methodologies to facilitate structural biology: finding a path through the maze. J. Struct. Funct. Genom. 14, 77–90 (2013)CrossRefGoogle Scholar
  5. 5.
    Yu, C., Huang, L.: Cross-linking mass spectrometry: an emerging technology for interactomics and structural biology. Anal. Chem. 90, 144–165 (2018)CrossRefGoogle Scholar
  6. 6.
    Kim, S.J., Fernandez-Martinez, J., Nudelman, I., Shi, Y., Zhang, W., Raveh, B., Herricks, T., Slaughter, B.D., Hogan, J.A., Upla, P., Chemmama, I.E., Pellarin, R., Echeverria, I., Shivaraju, M., Chaudhury, A.S., Wang, J., Williams, R., Unruh, J.R., Greenberg, C.H., Jacobs, E.Y., Yu, Z., de la Cruz, M.J., Mironska, R., Stokes, D.L., Aitchison, J.D., Jarrold, M.F., Gerton, J.L., Ludtke, S.J., Akey, C.W., Chait, B.T., Sali, A., Rout, M.P.: Integrative structure and functional anatomy of a nuclear pore complex. Nature. 555, 475–482 (2018)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Cimermancic, P., Yu, C., Schweitzer, A., Chopra, N., Engel, J.L., Greenberg, C., Huszagh, A.S., Beck, F., Sakata, E., Yang, Y., Novitsky, E.J., Leitner, A., Nanni, P., Kahraman, A., Guo, X., Dixon, J.E., Rychnovsky, S.D., Aebersold, R., Baumeister, W., Sali, A., Huang, L.: Molecular details underlying dynamic structures and regulation of the human 26S proteasome. Mol. Cell. Proteomics. 16, 840–854 (2017)CrossRefGoogle Scholar
  8. 8.
    Robinson, P.J., Trnka, M.J., Bushnell, D.A., Davis, R.E., Mattei, P.J., Burlingame, A.L., Kornberg, R.D.: Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell. 166, 1411–1422 e1416 (2016)CrossRefGoogle Scholar
  9. 9.
    Arlt, C., Ihling, C.H., Sinz, A.: Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics. 15, 2746–2755 (2015)CrossRefGoogle Scholar
  10. 10.
    Zeng-Elmore, X., Gao, X.Z., Pellarin, R., Schneidman-Duhovny, D., Zhang, X.J., Kozacka, K.A., Tang, Y., Sali, A., Chalkley, R.J., Cote, R.H., Chu, F.: Molecular architecture of photoreceptor phosphodiesterase elucidated by chemical cross-linking and integrative modeling. J. Mol. Biol. 426, 3713–3728 (2014)CrossRefGoogle Scholar
  11. 11.
    Lauber, M.A., Rappsilber, J., Reilly, J.P.: Dynamics of ribosomal protein S1 on a bacterial ribosome with cross-linking and mass spectrometry. Mol. Cell. Proteomics. 11, 1965–1976 (2012)CrossRefGoogle Scholar
  12. 12.
    Lauber, M.A., Reilly, J.P.: Structural analysis of a prokaryotic ribosome using a novel amidinating cross-linker and mass spectrometry. J. Proteome Res. 10, 3604–3616 (2011)CrossRefGoogle Scholar
  13. 13.
    Schweppe, D.K., Chavez, J.D., Lee, C.F., Caudal, A., Kruse, S.E., Stuppard, R., Marcinek, D.J., Shadel, G.S., Tian, R., Bruce, J.E.: Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 114, 1732–1737 (2017)CrossRefGoogle Scholar
  14. 14.
    Liu, F., Rijkers, D.T., Post, H., Heck, A.J.: Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat. Methods. 12, 1179–1184 (2015)CrossRefGoogle Scholar
  15. 15.
    Trnka, M.J., Baker, P.R., Robinson, P.J., Burlingame, A.L., Chalkley, R.J.: Matching cross-linked peptide spectra: only as good as the worse identification. Mol. Cell. Proteomics. 13, 420–434 (2014)CrossRefGoogle Scholar
  16. 16.
    Iacobucci, C., Sinz, A.: To be or not to be? Five guidelines to avoid misassignments in cross-linking/mass spectrometry. Anal. Chem. 89, 7832–7835 (2017)CrossRefGoogle Scholar
  17. 17.
    Sinz, A.: Divide and conquer: cleavable cross-linkers to study protein conformation and protein-protein interactions. Anal. Bioanal. Chem. 409, 33–44 (2017)CrossRefGoogle Scholar
  18. 18.
    Tang, X., Munske, G.R., Siems, W.F., Bruce, J.E.: Mass spectrometry identifiable cross-linking strategy for studying protein-protein interactions. Anal. Chem. 77, 311–318 (2005)CrossRefGoogle Scholar
  19. 19.
    Chowdhury, S.M., Munske, G.R., Tang, X., Bruce, J.E.: Collisionally activated dissociation and electron capture dissociation of several mass spectrometry-identifiable chemical cross-linkers. Anal. Chem. 78, 8183–8193 (2006)CrossRefGoogle Scholar
  20. 20.
    Soderblom, E.J., Goshe, M.B.: Collision-induced dissociative chemical cross-linking reagents and methodology: applications to protein structural characterization using tandem mass spectrometry analysis. Anal. Chem. 78, 8059–8068 (2006)CrossRefGoogle Scholar
  21. 21.
    Soderblom, E.J., Bobay, B.G., Cavanagh, J., Goshe, M.B.: Tandem mass spectrometry acquisition approaches to enhance identification of protein-protein interactions using low-energy collision-induced dissociative chemical crosslinking reagents. Rapid Commun. Mass Spectrom. 21, 3395–3408 (2007)CrossRefGoogle Scholar
  22. 22.
    Liu, F., Goshe, M.B.: Combinatorial electrostatic collision-induced dissociative chemical cross-linking reagents for probing protein surface topology. Anal. Chem. 82, 6215–6223 (2010)CrossRefGoogle Scholar
  23. 23.
    Muller, M.Q., Dreiocker, F., Ihling, C.H., Schafer, M., Sinz, A.: Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal. Chem. 82, 6958–6968 (2010)CrossRefGoogle Scholar
  24. 24.
    Hage, C., Falvo, F., Schafer, M., Sinz, A.: Novel concepts of MS-cleavable cross-linkers for improved peptide structure analysis. J. Am. Soc. Mass Spectrom. 28, 2022–2038 (2017)CrossRefGoogle Scholar
  25. 25.
    Kao, A., Chiu, C.L., Vellucci, D., Yang, Y., Patel, V.R., Guan, S., Randall, A., Baldi, P., Rychnovsky, S.D., Huang, L.: Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol. Cell. Proteomics. 10, M110 002212 (2011)CrossRefGoogle Scholar
  26. 26.
    Kaake, R.M., Wang, X., Burke, A., Yu, C., Kandur, W., Yang, Y., Novtisky, E.J., Second, T., Duan, J., Kao, A., Guan, S., Vellucci, D., Rychnovsky, S.D., Huang, L.: A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol. Cell. Proteomics. 13, 3533–3543 (2014)CrossRefGoogle Scholar
  27. 27.
    Yu, C., Kandur, W., Kao, A., Rychnovsky, S., Huang, L.: Developing new isotope-coded mass spectrometry-cleavable cross-linkers for elucidating protein structures. Anal. Chem. 86, 2099–2106 (2014)CrossRefGoogle Scholar
  28. 28.
    Clifford-Nunn, B., Showalter, H.D., Andrews, P.C.: Quaternary diamines as mass spectrometry cleavable crosslinkers for protein interactions. J. Am. Soc. Mass Spectrom. 23, 201–212 (2012)CrossRefGoogle Scholar
  29. 29.
    Petrotchenko, E.V., Serpa, J.J., Borchers, C.H.: An isotopically coded CID-cleavable biotinylated cross-linker for structural proteomics. Mol. Cell. Proteomics. 10, M110 001420 (2011)CrossRefGoogle Scholar
  30. 30.
    Gotze, M., Pettelkau, J., Fritzsche, R., Ihling, C.H., Schafer, M., Sinz, A.: Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J. Am. Soc. Mass Spectrom. 26, 83–97 (2015)CrossRefGoogle Scholar
  31. 31.
    Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)CrossRefGoogle Scholar
  32. 32.
    Catherman, A.D., Durbin, K.R., Ahlf, D.R., Early, B.P., Fellers, R.T., Tran, J.C., Thomas, P.M., Kelleher, N.L.: Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol. Cell. Proteomics. 12, 3465–3473 (2013)CrossRefGoogle Scholar
  33. 33.
    Toby, T.K., Fornelli, L., Kelleher, N.L.: Progress in top-down proteomics and the analysis of Proteoforms. Annu. Rev. Anal. Chem. 9, 499–519 (2016)CrossRefGoogle Scholar
  34. 34.
    Riley, N.M., Coon, J.J.: The role of electron transfer dissociation in modern proteomics. Anal. Chem. 90, 40–64 (2018)CrossRefGoogle Scholar
  35. 35.
    Chi, A., Huttenhower, C., Geer, L.Y., Coon, J.J., Syka, J.E.P., Bai, D.L., Shabanowitz, J., Burke, D.J., Troyanskaya, O.G., Hunt, D.F.: Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 104, 2193–2198 (2007)CrossRefGoogle Scholar
  36. 36.
    Desaire, H.: Glycopeptide analysis, recent developments and applications. Mol. Cell. Proteomics. 12, 893–901 (2013)CrossRefGoogle Scholar
  37. 37.
    Good, D.M., Wirtala, M., McAlister, G.C., Coon, J.J.: Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics. 6, 1942–1951 (2007)CrossRefGoogle Scholar
  38. 38.
    Frese, C.K., Altelaar, A.F.M., Hennrich, M.L., Nolting, D., Zeller, M., Griep-Raming, J., Heck, A.J.R., Mohammed, S.: Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J. Proteome Res. 10, 2377–2388 (2011)CrossRefGoogle Scholar
  39. 39.
    Kolbowski, L., Mendes, M.L., Rappsilber, J.: Optimizing the parameters governing the fragmentation of cross-linked peptides in a tribrid mass spectrometer. Anal. Chem. 89, 5311–5318 (2017)CrossRefGoogle Scholar
  40. 40.
    Gardner, M.W., Brodbelt, J.S.: Preferential cleavage of N-N hydrazone bonds for sequencing bis-arylhydrazone conjugated peptides by electron transfer dissociation. Anal. Chem. 82, 5751–5759 (2010)CrossRefGoogle Scholar
  41. 41.
    Chakrabarty, J.K., Naik, A.G., Fessler, M.B., Munske, G.R., Chowdhury, S.M.: Differential tandem mass spectrometry-based cross-linker: a new approach for high confidence in identifying protein cross-linking. Anal. Chem. 88, 10215–10222 (2016)CrossRefGoogle Scholar
  42. 42.
    Trnka, M.J., Burlingame, A.L.: Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites. Mol. Cell. Proteomics. 9, 2306–2317 (2010)CrossRefGoogle Scholar
  43. 43.
    Leitner, A., Joachimiak, L.A., Unverdorben, P., Walzthoeni, T., Frydman, J., Forster, F., Aebersold, R.: Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc. Natl. Acad. Sci. U. S. A. 111, 9455–9460 (2014)CrossRefGoogle Scholar
  44. 44.
    Gutierrez, C.B., Yu, C., Novitsky, E.J., Huszagh, A.S., Rychnovsky, S.D., Huang, L.: Developing an acidic residue reactive and sulfoxide-containing MS-cleavable homobifunctional cross-linker for probing protein-protein interactions. Anal. Chem. 88, 8315–8322 (2016)CrossRefGoogle Scholar
  45. 45.
    Belsom, A., Mudd, G., Giese, S., Auer, M., Rappsilber, J.: Complementary benzophenone cross-linking/mass spectrometry photochemistry. Anal. Chem. 89, 5319–5324 (2017)CrossRefGoogle Scholar
  46. 46.
    Luo, J., Fishburn, J., Hahn, S., Ranish, J.: An integrated chemical cross-linking and mass spectrometry approach to study protein complex architecture and function. Mol. Cell. Proteomics. 11, (2012)Google Scholar
  47. 47.
    Hage, C., Iacobucci, C., Rehkamp, A., Arlt, C., Sinz, A.: The first zero-length mass spectrometry-cleavable cross-linker for protein structure analysis. Angew. Chem. Int. Ed. Eng. 56, 14551–14555 (2017)CrossRefGoogle Scholar
  48. 48.
    Lauber, M.A., Reilly, J.P.: Novel amidinating cross-linker for facilitating analyses of protein structures and interactions. Anal. Chem. 82, 7736–7743 (2010)CrossRefGoogle Scholar
  49. 49.
    Chaturvedi, R.K., MacMahon, A.E., Schmir, G.L.: The hydrolysis of thioimidate esters. Tetrahedral intermediates and general acid catalysis. J. Am. Chem. Soc. 89, 6984–6993 (1967)CrossRefGoogle Scholar
  50. 50.
    Beardsley, R.L., Reilly, J.P.: Fragmentation of amidinated peptide ions. J. Am. Soc. Mass Spectrom. 15, 158–167 (2004)CrossRefGoogle Scholar
  51. 51.
    Beardsley, R.L., Reilly, J.P.: Quantitation using enhanced signal tags: a technique for comparative proteomics. J. Proteome Res. 2, 15–21 (2003)CrossRefGoogle Scholar
  52. 52.
    Sharon, L.A., Beardsley, R.L., Reilly, J.P.: Derivatization of tryptic peptides to facilitate de novo sequencing. Abstr. Pap. Am. Chem. Soc. 227, U609–U609 (2004)Google Scholar
  53. 53.
    Beardsley, R.L., Sharon, L.A., Reilly, J.P.: Peptide de novo sequencing facilitated by a dual-labeling strategy. Anal. Chem. 77, 6300–6309 (2005)CrossRefGoogle Scholar
  54. 54.
    Janecki, D.J., Beardsley, R.L., Reilly, J.P.: Probing protein tertiary structure with amidination. Anal. Chem. 77, 7274–7281 (2005)CrossRefGoogle Scholar
  55. 55.
    Liu, X., Broshears, W.C., Reilly, J.P.: Probing the structure and activity of trypsin with amidination. Anal. Biochem. 367, 13–19 (2007)CrossRefGoogle Scholar
  56. 56.
    Running, W.E., Reilly, J.P.: Ribosomal proteins of Deinococcus radiodurans: their solvent accessibility and reactivity. J. Proteome Res. 8, 1228–1246 (2009)CrossRefGoogle Scholar
  57. 57.
    Liu, X., Reilly, J.P.: Correlating the chemical modification of Escherichia coli ribosomal proteins with crystal structure data. J. Proteome Res. 8, 4466–4478 (2009)CrossRefGoogle Scholar
  58. 58.
    Beardsley, R.L., Running, W.E., Reilly, J.P.: Probing the structure of the Caulobacter crescentus ribosome with chemical labeling and mass spectrometry. J. Proteome Res. 5, 2935–2946 (2006)CrossRefGoogle Scholar
  59. 59.
    Browne, D.T., Kent, S.B.H.: Formation of non-amidine products in reaction of primary amines with imido esters. Biochem. Biophys. Res. Commun. 67, 126–132 (1975)CrossRefGoogle Scholar
  60. 60.
    Dihazi, G.H., Sinz, A.: Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 17, 2005–2014 (2003)CrossRefGoogle Scholar
  61. 61.
    Koolen, H.H., Gomes, A.F., Schwab, N.V., Eberlin, M.N., Gozzo, F.C.: Imidate-based cross-linkers for structural proteomics: increased charge of protein and peptide ions and CID and ECD fragmentation studies. J. Am. Soc. Mass Spectrom. 25, 1181–1191 (2014)CrossRefGoogle Scholar
  62. 62.
    Li, S., Dabir, A., Misal, S.A., Tang, H., Radivojac, P., Reilly, J.P.: Impact of amidination on peptide fragmentation and identification in shotgun proteomics. J. Proteome Res. 15, 3656–3665 (2016)CrossRefGoogle Scholar
  63. 63.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. a nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  64. 64.
    Turecek, F., Syrstad, E.A.: Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. J. Am. Chem. Soc. 125, 3353–3369 (2003)CrossRefGoogle Scholar
  65. 65.
    Zhurov, K.O., Fornelli, L., Wodrich, M.D., Laskay, U.A., Tsybin, Y.O.: Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42, 5014–5030 (2013)CrossRefGoogle Scholar
  66. 66.
    He, Y., Lauber, M.A., Reilly, J.P.: Unique fragmentation of singly charged DEST cross-linked peptides. J. Am. Soc. Mass Spectrom. 23, 1046–1052 (2012)CrossRefGoogle Scholar
  67. 67.
    Li, W., Song, C., Bailey, D.J., Tseng, G.C., Coon, J.J., Wysocki, V.H.: Statistical analysis of electron transfer dissociation pairwise fragmentation patterns. Anal. Chem. 83, 9540–9545 (2011)CrossRefGoogle Scholar
  68. 68.
    Han, H., Xia, Y., McLuckey, S.A.: Ion trap collisional activation of c and z* ions formed via gas-phase ion/ion electron-transfer dissociation. J. Proteome Res. 6, 3062–3069 (2007)CrossRefGoogle Scholar
  69. 69.
    Xia, Y., Chrisman, P.A., Pitteri, S.J., Erickson, D.E., McLuckey, S.A.: Ion/molecule reactions of cation radicals formed from protonated polypeptides via gas-phase ion/ion electron transfer. J. Am. Chem. Soc. 128, 11792–11798 (2006)CrossRefGoogle Scholar
  70. 70.
    Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2008)CrossRefGoogle Scholar
  71. 71.
    Sun, Q., Nelson, H., Ly, T., Stoltz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2009)CrossRefGoogle Scholar
  72. 72.
    Iacobucci, C., Schafer, M., Sinz, A.: Free radical-initiated peptide sequencing (FRIPS)-based cross-linkers for improved peptide and protein structure analysis. Mass Spectrom. Rev. (2018)Google Scholar
  73. 73.
    Liu, F., Lossl, P., Scheltema, R., Viner, R., Heck, A.J.R.: Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat. Commun. 8, 15473 (2017)CrossRefGoogle Scholar
  74. 74.
    Breci, L.A., Tabb, D.L., Yates, J.R., Wysocki, V.H.: Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963–1971 (2003)CrossRefGoogle Scholar
  75. 75.
    Gu, C., Tsaprailis, G., Breci, L., Wysocki, V.H.: Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides. Anal. Chem. 72, 5804–5813 (2000)CrossRefGoogle Scholar
  76. 76.
    Huang, Y., Triscari, J.M., Tseng, G.C., Pasa-Tolic, L., Lipton, M.S., Smith, R.D., Wysocki, V.H.: Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal. Chem. 77, 5800–5813 (2005)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations