Size-Dependent Association of Cobalt Deuteride Cluster Anions Co3Dn (n = 0–4) with Dinitrogen

  • Li-Hui Mou
  • Zi-Yu LiEmail author
  • Qing-Yu Liu
  • Sheng-Gui HeEmail author
Focus: Honoring Helmut Schwarz´s Election to the National Academy of Sciences: Research Article


Dinitrogen (N2) activation by metal hydride species is of fundamental interest and practical importance while the role of hydrogen in N2 activation is not well studied. Herein, the structures of Co3Dn (n = 0–4) clusters and their reactions with N2 have been studied by using a combined experimental and computational approach. The mass spectrometry experiments identified that the Co3Dn (n = 2–4) clusters could adsorb N2 while the Co3Dn (n = 0 and 1) clusters were inert. The photoelectron imaging spectroscopy indicated that the electron detachment energies of Co3D2–4 are smaller than those of Co3D0,1, which characterized that it is easier to transfer electrons from Co3D2–4 than from Co3D0,1 to activate N2. The density functional theory calculations generally supported the experimental observations. Further analysis revealed that the H atoms in the Co3Hn (n = 2–4) clusters generally result in higher energies of the Co 3d orbitals in comparison with the Co3Hn (n = 0 and 1) systems. By forming chemical bonds with H atoms, the Co atoms of Co3H2–4 are less negatively charged with respect to the naked Co3 system, which leads to higher N2 binding energies of Co3H2–4N2 than that of Co3N2.


Ion-molecule reactions Mass spectrometry Photoelectron imaging spectroscopy N2 activation Cobalt Density functional theory 



This work was supported by the National Natural Science Foundation of China (Nos. 21833011, 21773253, and 21603237).

Supplementary material

13361_2019_2226_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1196 kb)


  1. 1.
    Cherkasov, N., Ibhadon, A.O., Fitzpatrick, P.: A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 90, 24–33 (2015)CrossRefGoogle Scholar
  2. 2.
    Pfromm, P.H.: Towards sustainable agriculture: Fossil-free ammonia. J. Renew. Sustain. Ener. 9, 034702 (2017)CrossRefGoogle Scholar
  3. 3.
    Tomaszewski, R.: Citations to chemical resources in scholarly articles: CRC Handbook of Chemistry and Physics and The Merck Index. Scientometrics. 112, 1865–1879 (2017)CrossRefGoogle Scholar
  4. 4.
    Avenier, P., Taoufik, M., Lesage, A., Solans-Monfort, X., Baudouin, A., de Mallmann, A., Veyre, L., Basset, J.M., Eisenstein, O., Emsley, L., Quadrelli, E.A.: Dinitrogen dissociation on an isolated surface tantalum atom. Science. 317, 1056–1060 (2007)CrossRefGoogle Scholar
  5. 5.
    Cui, X.-Y., Tang, C., Zhang, Q.: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018)CrossRefGoogle Scholar
  6. 6.
    Zhang, N., Jalil, A., Wu, D.-X., Chen, S.-M., Liu, Y.-F., Gao, C., Ye, W., Qi, Z.-M., Ju, H.-X., Wang, C.-M., Wu, X.-J., Song, L., Zhu, J.-F., Xiong, Y.-J.: Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 140, 9434–9443 (2018)PubMedCrossRefGoogle Scholar
  7. 7.
    Liu, J.-C., Ma, X.-L., Li, Y., Wang, Y.-G., Xiao, H., Li, J.: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang, C.-X., Zhuang, J., Wang, G.-J., Chen, M.-H., Zhao, Y.-Y., Zheng, X.-M., Zhou, M.-F.: Tantalum dioxide complexes with dinitrogen. Formation and characterization of the side-on and end-on bonded TaO2(NN)x (x = 1−3) complexes. J. Phys. Chem. A. 114, 8083–8089 (2010)PubMedCrossRefGoogle Scholar
  9. 9.
    Akagi, F., Matsuo, T., Kawaguchi, H.: Dinitrogen cleavage by a diniobium tetrahydride complex: Formation of a nitride and its conversion into imide species. Angew. Chem. Int. Ed. 46, 8778–8781 (2007)CrossRefGoogle Scholar
  10. 10.
    Shima, T., Hu, S.-W., Luo, G., Kang, X.-H., Luo, Y., Hou, Z.-M.: Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science. 340, 1549–1552 (2013)PubMedCrossRefGoogle Scholar
  11. 11.
    Rittle, J., McCrory, C.C., Peters, J.C.: A 106-fold enhancement in N2 binding affinity of an Fe2(μ-H)2 core upon reduction to a mixed-valence FeIIFeI state. J. Am. Chem. Soc. 136, 13853–13862 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Araake, R., Sakadani, K., Tada, M., Sakai, Y., Ohki, Y.: [Fe4] and [Fe6] hydride clusters supported by phosphines: Synthesis, characterization, and application in N2 reduction. J. Am. Chem. Soc. 139, 5596–5606 (2017)PubMedCrossRefGoogle Scholar
  13. 13.
    Hoffman, B.M., Lukoyanov, D., Yang, Z.-Y., Dean, D.R., Seefeldt, L.C.: Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 114, 4041–4062 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dillinger, S., Klein, M.P., Steiner, A., McDonald, D.C., Duncan, M.A., Kappes, M.M., Niedner-Schatteburg, G.: Cryo IR Spectroscopy of N2 and H2 on Ru8 +: The Effect of N2 on the H-Migration. J. Phys. Chem. Lett. 9, 914–918 (2018)PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang, L.-X., Liu, Q.-Y., Li, X.-N., He, S.-G.: Design and application of a high-temperature linear ion trap reactor. J. Am. Soc. Mass Spectrom. 29, 78–84 (2018)PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, Q., Zhao, Y.-X., Jiang, L.-X., Chen, J.-J., He, S.-G.: Coupling of methane and carbon dioxide mediated by diatomic copper boride cations. Angew. Chem. Int. Ed. 57, 14134–14138 (2018)CrossRefGoogle Scholar
  17. 17.
    Xue, W., Wang, Z.-C., He, S.-G., Xie, Y., Bernstein, E.R.: Experimental and theoretical study of the reactions between small neutral iron oxide clusters and carbon monoxide. J. Am. Chem. Soc. 130, 15879–15888 (2008)PubMedCrossRefGoogle Scholar
  18. 18.
    Fagiani, M.R., Song, X., Debnath, S., Gewinner, S., Schollkopf, W., Asmis, K.R., Bischoff, F.A., Muller, F., Sauer, J.: Dissociative water adsorption by Al3O4 + in the gas phase. J. Phys. Chem. Lett. 8, 1272–1277 (2017)PubMedCrossRefGoogle Scholar
  19. 19.
    Hintz, P.A., Ervin, K.M.: Chemisorption and oxidation reactions of nickel group cluster anions with N2, O2, CO2, and N2O. J. Chem. Phys. 103, 7897–7906 (1995)CrossRefGoogle Scholar
  20. 20.
    Mwakapumba, J., Ervin, K.N.: Reactivity of niobium cluster anions with nitrogen and carbon monoxide. Int. J. Mass Spectrom. 161, 161–174 (1997)CrossRefGoogle Scholar
  21. 21.
    Mitchell, S.A., Rayner, D.M., Bartlett, T., Hackett, P.A.: Reaction of tungsten clusters with molecular nitrogen. J. Chem. Phys. 104, 4012–4018 (1996)CrossRefGoogle Scholar
  22. 22.
    Morse, M.D., Geusic, M.E., Heath, J.R., Smalley, R.E.: Surface reactions of metal clusters. II. Reactivity surveys with D2,N2, and CO. J. Chem. Phys. 83, 2293–2304 (1985)CrossRefGoogle Scholar
  23. 23.
    Nakajima, A., Kishi, T., Sone, Y., Nonose, S., Kaya, K.: Reactivity of positively charged cobalt cluster ions with CH4, N2, H2, C2H4, and C2H2. Z. Phys. D: At., Mol. Clusters. 19, 385–387 (1991)CrossRefGoogle Scholar
  24. 24.
    Dillinger, S., Mohrbach, J., Hewer, J., Gaffga, M., Niedner-Schatteburg, G.: Infrared spectroscopy of N2 adsorption on size selected cobalt cluster cations in isolation. Phys. Chem. Chem. Phys. 17, 10358–10362 (2015)PubMedCrossRefGoogle Scholar
  25. 25.
    Geng, C.-Y., Li, J.-L., Weiske, T., Schwarz, H.: Ta2 +-mediated ammonia synthesis from N2 and H2 at ambient temperature. Proc. Natl. Acad. Sci. U. S. A. 115, 11680–11687 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mou, L.-H., Liu, Q.-Y., Zhang, T., Li, Z.-Y., He, S.-G.: Reactivity of tantalum carbide cluster anions TaCn (n = 1–4) with dinitrogen. J. Phys. Chem. A. 122, 3489–3495 (2018)PubMedCrossRefGoogle Scholar
  27. 27.
    Heim, H.C., Bernhardt, T.M., Lang, S.M., Barnett, R.N., Landman, U.: Interaction of iron–sulfur clusters with N2: Biomimetic systems in the gas phase. J. Phys. Chem. C. 120, 12549–12558 (2016)CrossRefGoogle Scholar
  28. 28.
    Zhang, X.-X., Liu, G.-X., Meiwes-Broer, K.H., Gantefor, G., Bowen, K.: CO2 activation and hydrogenation by PtHn cluster anions. Angew. Chem. Int. Ed. 55, 9644–9647 (2016)CrossRefGoogle Scholar
  29. 29.
    Zavras, A., Ghari, H., Ariafard, A., Canty, A.J., O'Hair, R.A.: Gas-phase ion-molecule reactions of copper hydride anions CuH2 - and Cu2H3. Inorg. Chem. 56, 2387–2399 (2017)PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang, L.-X., Zhao, C.-Y., Li, X.-N., Chen, H., He, S.-G.: Formation of gas-phase formate in thermal reactions of carbon dioxide with diatomic iron hydride anions. Angew. Chem. Int. Ed. 56, 4187–4191 (2017)CrossRefGoogle Scholar
  31. 31.
    Liu, Y.-Z., Jiang, L.-X., Li, X.-N., Wang, L.-N., Chen, J.-J., He, S.-G.: Gas-phase reactions of carbon dioxide with copper hydride anions Cu2H2 : Temperature-dependent transformation. J. Phys. Chem. C. 122, 19379–19384 (2018)CrossRefGoogle Scholar
  32. 32.
    Liu, S.-L., Geng, Z.-Y., Wang, Y.-C., Yan, Y.-F.: Methane activation by MH+ (M = Os, Ir, and Pt) and comparisons to the congeners of MH+ (M = Fe, Co, Ni and Ru, Rh, Pd). J. Phys. Chem. A. 116, 4560–4568 (2012)PubMedCrossRefGoogle Scholar
  33. 33.
    Schlangen, M., Schroder, D., Schwarz, H.: Pronounced ligand effects and the role of formal oxidation states in the nickel-mediated thermal activation of methane. Angew. Chem. Int. Ed. 46, 1641–1644 (2007)CrossRefGoogle Scholar
  34. 34.
    Kretschmer, R., Schlangen, M., Schwarz, H.: Isomer-selective thermal activation of methane in the gas phase by [HMO]+ and [M(OH)]+ (M=Ti and V). Angew. Chem. Int. Ed. 52, 6097–6101 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhang, Q., Michael, T.B.: Activation of methane by MH+ (M = Fe, Co, and Ni): A combined mass spectrometric and DFT study. J. Phys. Chem. A. 108, 9755–9761 (2004)CrossRefGoogle Scholar
  36. 36.
    Holland, P.L.: Metal-dioxygen and metal-dinitrogen complexes: Where are the electrons? Dalton T. 39, 5415–5425 (2010)CrossRefGoogle Scholar
  37. 37.
    Miller, A.E.S., Feigerle, C.S., Lineberger, W.C.: Laser photoelectron-spectroscopy of MnH2 , FeH2 , CoH2 , and NiH2 : Determination of the electron-affinities for the metal dihydrides. J. Chem. Phys. 84, 4127–4131 (1986)CrossRefGoogle Scholar
  38. 38.
    Yin, S., Xie, Y., Bernstein, E.R.: Experimental and theoretical studies of ammonia generation: Reactions of H2 with neutral cobalt nitride clusters. J. Chem. Phys. 137, 124304 (2012)PubMedCrossRefGoogle Scholar
  39. 39.
    Liu, S.-R., Zhai, H.-J., Wang, L.-S.: Electronic and structural evolution of Con clusters (n = 1–108) by photoelectron spectroscopy. Phys. Rev. B. 64, 153402 (2001)CrossRefGoogle Scholar
  40. 40.
    Wu, X.-N., Xu, B., Meng, J.-H., He, S.-G.: C–H bond activation by nanosized scandium oxide clusters in gas-phase. Int. J. Mass spectrom. 310, 57–64 (2012)CrossRefGoogle Scholar
  41. 41.
    Yuan, Z., Zhao, Y.-X., Li, X.-N., He, S.-G.: Reactions of V4O10 + cluster ions with simple inorganic and organic molecules. Int. J. Mass spectrom. 354, 105–112 (2013)CrossRefGoogle Scholar
  42. 42.
    Liu, Q.-Y., Hu, L., Li, Z.-Y., Ning, C.-G., Ma, J.-B., Chen, H., He, S.-G.: Photoelectron imaging spectroscopy of MoC and NbNdiatomic anions: A comparative study. J. Chem. Phys. 142, 164301 (2015)PubMedCrossRefGoogle Scholar
  43. 43.
    Neumark, D.M.: Slow electron velocity-map imaging of negative ions: Applications to spectroscopy and dynamics. J. Phys. Chem. A. 112, 13287–13301 (2008)PubMedCrossRefGoogle Scholar
  44. 44.
    Leon, I., Yang, Z., Liu, H.-T., Wang, L.-S.: The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters. Rev. Sci. Instrum. 85, 083106 (2014)PubMedCrossRefGoogle Scholar
  45. 45.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta Jr., J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford (2009)Google Scholar
  46. 46.
    Buendia, F., Beltran, M.R.: Theoretical study of hydrogen adsorption on Co clusters. Comput. Theor. Chem. 1021, 183–190 (2013)CrossRefGoogle Scholar
  47. 47.
    Bialach, P.M., Funk, A., Weiler, M., Gerhards, M.: IR spectroscopy on isolated Con(alcohol)m cluster anions (n = 1–4, m = 1–3): Structures and spin states. J. Chem. Phys. 133, 194304 (2010)PubMedCrossRefGoogle Scholar
  48. 48.
    Yoshida, H., Terasaki, A., Kobayashi, K., Tsukada, M., Kondow, T.: Spin-polarized electronic-structure of cobalt cluster anions studied by photoelectron-spectroscopy. J. Chem. Phys. 102, 5960–5965 (1995)CrossRefGoogle Scholar
  49. 49.
    Sebetci, A.: Cobalt clusters (Con, n ⩽ 6) and their anions. Chem. Phys. 354, 196–201 (2008)CrossRefGoogle Scholar
  50. 50.
    Pakiari, A.H., Dehghanpisheh, E.: The electronic structure of nanoparticle: Theoretical study of small cobalt clusters (Con , n = 2–5) (part A). Struct. Chem. 27, 583–593 (2015)CrossRefGoogle Scholar
  51. 51.
    Ma, Q.-M., Xie, Z., Wang, J., Liu, Y., Li, Y.-C.: Structures, stabilities and magnetic properties of small Co clusters. Phys. Lett. A. 358, 289–296 (2006)CrossRefGoogle Scholar
  52. 52.
    Kant, A., Strauss, B.H.: Dissociation energies of GeCu, GeCo, GeFe and GeCr. J. Chem. Phys. 49, 3579 (1968)CrossRefGoogle Scholar
  53. 53.
    Luo, Y.-R., Holmes, J.L.: The prediction of bond-dissociation energies for common organic-compounds. J. Mol. Struc-Theochem. 100, 123–129 (1993)CrossRefGoogle Scholar
  54. 54.
    Tao, J., Perdew, J.P., Staroverov, V.N., Scuseria, G.E.: Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)PubMedCrossRefGoogle Scholar
  55. 55.
    Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)PubMedCrossRefGoogle Scholar
  56. 56.
    Yuan, Z., Li, Z.-Y., Zhou, Z.-X., Liu, Q.-Y., Zhao, Y.-X., He, S.-G.: Thermal reactions of (V2O5)nO (n = 1–3) cluster anions with ethylene and propylene: Oxygen atom transfer versus molecular association. J. Phys. Chem. C. 118, 14967–14976 (2014)CrossRefGoogle Scholar
  57. 57.
    Tozer, D.J., Handy, N.C.: Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. J. Chem. Phys. 109, 10180–10189 (1998)CrossRefGoogle Scholar
  58. 58.
    Zhou, S.-D., Sun, X.-Y., Yue, L., Guo, C., Schlangen, M., Schwarz, H.: Selective nitrogen-atom transfer driven by a highly efficient intersystem crossing in the CeON+/CH4 system. Angew. Chem. Int. Ed. 57, 15902–15906 (2018)CrossRefGoogle Scholar
  59. 59.
    Xu, B., Zhao, Y.-X., Ding, X.-L., He, S.-G.: Reactions of Sc2O4 and La2O4 clusters with CO: A comparative study. Int. J. Mass Spectrom. 334, 1–7 (2013)CrossRefGoogle Scholar
  60. 60.
    Li, Y.-K., Wang, Z.-C., He, S.-G., Bierbaum, V.M.: Reactions of sulfur- and oxygen-containing anions with hydrogen atoms: A comparative study. J. Phys. Chem. Lett. 8, 5725 (2017)PubMedCrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.CAS Research/Education Center of Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesBeijingPeople’s Republic of China

Personalised recommendations