Advertisement

Fundamental Studies of New Ionization Technologies and Insights from IMS-MS

Abstract

Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Trimpin, S.: Novel ionization processes for use in mass spectrometry: ‘squeezing’ nonvolatile analyte ions from crystals and droplets. Rapid Commun. Mass Spectrom. (2019). https://doi.org/10.1002/rcm.8269

  2. 2.

    Trimpin, S.: “Magic” ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 4–21 (2016)

  3. 3.

    Trimpin, S., Wang, B., Inutan, E.D., Li, J., Lietz, C.B., Pagnotti, V.S., Harron, A.F., Sardelis, D., McEwen, C.N.: A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. J. Am. Soc. Mass. Spectrom. 23, 1644–1660 (2012)

  4. 4.

    Li, J., Inutan, E.D., Wang, B., Lietz, C.B., Green, D.R., Manly, C.D., Richards, A.L., Marshall, D.D., Lingenfelter, S., Ren, Y., Trimpin, S.: Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces. J. Am. Soc. Mass Spectrom. 23, 1625–1643 (2012)

  5. 5.

    McEwen, C.N., Trimpin, S.: An alternative ionization paradigm for atmospheric pressure mass spectrometry: flying elephants from trojan horses. Int. J. Mass Spectrom. 300, 167–172 (2011)

  6. 6.

    Trimpin, S., Ren, Y., Wang, B., Lietz, C.B., Richards, A.L., Marshall, D.D., Inutan, E.D.: Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer. Anal. Chem. 83, 5469–5475 (2011)

  7. 7.

    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for analysis of large molecules. Science. 246, 64–67 (1989)

  8. 8.

    Javanshad, R., Venter, A.R.: Ambient ionization mass spectrometry: real-time, proximal sample processing and ionization. Anal. Methods. 9, 4896–4907 (2017)

  9. 9.

    Takats, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 306, 471–473 (2004)

  10. 10.

    Roach, P.J., Laskin, J., Laskin, A.: Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst. 135, 2233–2236 (2010)

  11. 11.

    Cody, R., Domin, M. (eds.): Ambient ionization mass spectrometry. R. Soc. Chem. (2015). https://doi.org/10.1039/9781782628026

  12. 12.

    McEwen, C.N., Larsen, B.S.: Fifty years of desorption ionization of nonvolatile compounds. Int. J. Mass Spectrom. 377, 515–531 (2015)

  13. 13.

    Peacock, P.M., Zhang, W.J., Trimpin, S.: Advances in ionization for mass spectrometry. Anal. Chem. 89, 372–388 (2017)

  14. 14.

    Trimpin, S.: Redefining simplicity in ionization: discovery and implementation of novel ionization processes in mass spectrometry. LCGC North Am. 35, 507–510 (2017)

  15. 15.

    Lu, I.-C., Pophristic, M., Inutan, E.D., McKay, R.G., McEwen, C.N., Trimpin, S.: Simplifying the ion source for mass spectrometry. Rapid Commun. Mass Spectrom. 30, 2568–2572 (2016)

  16. 16.

    Trimpin, S., Pophristic, M., Adeniji'Adele, A., Tomsho, J.W., McEwen, C.N.: Vacuum matrix-assisted ionization source offering simplicity, sensitivity, and exceptional robustness in mass spectrometry. Anal. Chem. 90, 11188–11192 (2018)

  17. 17.

    Lu, I.-C., Elia, E.A., Zhang, W.J., Pophristic, M., Inutan, E.D., McEwen, C.N., Trimpin, S.: Development of an easily adaptable, high sensitivity source for inlet ionization. Anal. Methods. 9, 4971–4978 (2017)

  18. 18.

    McEwen, C.N., Pagnotti, V.S., Inutan, E.D., Trimpin, S.: New paradigm in ionization: multiply charged ion formation from a solid matrix without a laser or voltage. Anal. Chem. 82, 9164–9168 (2010)

  19. 19.

    Inutan, E.D., Trimpin, S.: Matrix assisted ionization vacuum, a new ionization method for biological materials analysis using mass spectrometry. Mol. Cell Proteomics. 12, 792–796 (2013)

  20. 20.

    McEwen, C.N., Trimpin, S., Pagnotti, V.S.: System and method for ionization of molecules for mass spectrometry and ion mobility spectrometry, US 20130214154 A1

  21. 21.

    Trimpin, S., Inutan, E.D.: System and methods for ionizing compounds using matrix-assistance for mass spectrometry and ion mobility, US 20130306856 A1 and US 20140027631

  22. 22.

    Trimpin, S.: Composition and methods for mass spectrometry, US 20150364311 A1

  23. 23.

    Trimpin, S., Lu, I.-C., Rauschenbach, S., Hoang, K., Wang, B., Chubatyi, N.D., Zhang, W.J., Inutan, E.D., Pophristic, M., Sidorenko, A., McEwen, C.N.: Spontaneous charge separation and sublimation processes are ubiquitous in nature and in ionization processes in mass spectrometry. J. Am. Soc. Mass Spectrom. 29, 304–315 (2018)

  24. 24.

    Olawale, D.O., Okoli, O.O.I., Fontenot, R.S., Hollerman, W.A.: (Eds.), Triboluminescence: theory, synthesis, and application, Springer (2016). ISBN 978-3-319-38842-7

  25. 25.

    Jha, P., Chandra, B.P.: Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence. 29, 977–993 (2014)

  26. 26.

    Biryukov, D.A., Vlasova, M.I., Gerasimov, D.N., Sinkevich, O.A.: Light emitted from a liquid that flows in a narrow channel as triboluminescence. Opt. Spectrosc. 114, 704–708 (2013)

  27. 27.

    Dawson, T.L.: Changing colours: now you see them, now you don’t. Color Technol. 126, 177–188 (2010)

  28. 28.

    Hardy, G.E., Kaska, W.C., Chandra, B.P., Zink, J.I.: Triboluminescence-structure relationships in polymorphs of hexaphenylcarbodiphsohorane and anthranilic acid, molecular crystals. Salts. J. Am. Chem. Soc. 103, 1074–1079 (1981)

  29. 29.

    Guardiola, J., Rojo, V., Ramos, G.: Influence of particle size, fluidization velocity and relative humidity on fluidized bed electrostatics. J. Electrostatics. 37, 1–20 (1996)

  30. 30.

    Itakura, T., Masuda, H., Ohtsuka, C., Matsusaka, S.: The contact potential difference of powder and the Tribo-charge. J. Electrostatics. 38, 213–226 (1996)

  31. 31.

    Matsusaka, S., Umemoto, H., Nishitani, M., Masuda, H.: electrostatic charge distribution of particles in gas–solids pipe flow. J. Electrostatics. 55, 81–96 (2002)

  32. 32.

    Briscoe, W.H., Horn, R.G.: Direct measurement of surface forces due to charging of solids immersed in a nonpolar liquid. Langmuir. 18, 3945–3956 (2002)

  33. 33.

    Watanabe, H., Ghadiri, M., Matsuyama, T., Ding, Y.L., Pitt, K.G., Maruyama, H., Matsusaka, S., Masuda, H.: Triboelectrification of pharmaceutical powders by particle impact. Int. J. Pharmaceutics. 334, 149–155 (2007)

  34. 34.

    Gouveia, R.F., Galembeck, F.: Electrostatic charging of hydrophilic particles due to water adsorption. J. Am. Chem. Soc. 131, 11381–11386 (2009)

  35. 35.

    Forward, K.M., Lacks, D.J., Sankaran, R.M.: Triboelectric charging of granular insulator mixtures due solely to particle-particle interactions. Ind. Eng. Chem. Res. 48, 2309–2314 (2009)

  36. 36.

    Matsusaka, S., Maruyama, H., Matsuyama, T., Ghadiri, M.: Triboelectric charging of powders: a review. Chem. Eng Sci. 65, 5781–5807 (2010)

  37. 37.

    Singh, S.V., Kusano, Y., Morgen, P., Michelsen, P.K.: Surface charging, discharging and chemical modification at a sliding contact. J. Appl. Phys. 111, 083501 (2012)

  38. 38.

    Zink, J.I.: Triboluminescence. Accts. Chem. Res. 11, 289–295 (1978)

  39. 39.

    Sweeting, L.M., Cashel, M.L., Rosenblatt, M.M.: Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition. JOL. 52, 281–291 (1992)

  40. 40.

    Sweeting, L.M., Cashel, M.L., Dott, M., Gingerich, J.M., Guido, J.L., Kling, J.A., Pippin, R.F., Rosenblatt, M.M., Rutter, R.A., Spence, R.A.: Spectroscopy and mechanism in triboluminescence. Mol. Cryst. Liq. Cryst. 211, 389–396 (1992)

  41. 41.

    Sweeting, L.M.: Triboluminescence with and without air. Chem. Mater. 13, 854–870 (2001)

  42. 42.

    Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60, 2299–2301 (1988)

  43. 43.

    Koichi Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)

  44. 44.

    Trimpin, S., Herath, T.N., Inutan, E.D., Cernat, S.A., Wager-Miller, J., Mackie, K., Walker, J.M.: Field-free transmission geometry atmospheric pressure matrix-assisted laser desorption/ionization of unadulterated tissue samples. Rapid Commun. Mass Spectrom. 23, 3023–3027 (2009)

  45. 45.

    Trimpin, S., Inutan, E.D., Herath, T.N., McEwen, C.N.: Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal. Chem. 82, 11–15 (2010)

  46. 46.

    Pagnotti, V.S., Chubatyi, N.D., McEwen, C.N.: Solvent assisted inlet ionization: an ultrasensitive new liquid introduction ionization method for mass spectrometry. Anal. Chem. 83, 3981–3985 (2011)

  47. 47.

    Lee, S.W., Freivogel, P., Schindler, T., Beauchamp, J.L.: Freeze-dried biomolecules: FT-ICR studies of the specific solvation of functional groups and clathrate formation observed by the slow evaporation of water from hydrated peptides and model compounds in the gas phase. J. Am. Chem. Soc. 120, 11758–11765 (1998)

  48. 48.

    Tang, K., Page, J.S., Marginean, I., Kelly, R.T., Smith, R.D.: Improving liquid chromatography-mass spectrometry sensitivity using a subambient pressure ionization with nanoelectrospray (SPIN) interface. J. Am. Soc. Mass Spectrom. 22, 1318–1325 (2011)

  49. 49.

    Konermann, L., McAllister, R.G., Metwally, H.: Molecular dynamics simulations of the electrospray process: formation of NaCI clusters via the charged residue mechanism. J. Phys. Chem. B. 118, 12025–12033 (2014)

  50. 50.

    Oh, M.I., Consta, S.: What factors determine the stability of a weak protein-protein interaction in a charged aqueous droplet? Phys. Chem. Chemical Phys. 19, 31965–31981 (2017)

  51. 51.

    Trimpin, S., Inutan, E.D.: Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 722–732 (2013)

  52. 52.

    Trimpin, S., Lutomski, C.A., El-Baba, T.J., Woodall, D.W., Foley, C.D., Manly, C.D., Wang, B., Liu, C.W., Harless, B.M., Kumar, R., Imperial, L.F., Inutan, E.D.: Magic matrices for ionization in mass spectrometry. Int. J. Mass Spectrom. 377, 532–545 (2015)

  53. 53.

    Wenzel, T., Sparbier, K., Mieruch, T., Kostrzewa, M.: 2,5-Dihydroxyacetophenone: a matrix for highly sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of proteins using manual and automated preparation techniques. Rapid Commun. Mass Spectrom. 20, 785–789 (2006)

  54. 54.

    Trimpin, S., Lee, C., Weidner, S.M., El-Baba, T.J., Lutomski, C.A., Inutan, E.D., Foley, C.D., Ni, C.K., McEwen, C.N.: Unprecedented ionization processes in mass spectrometry provide missing link between ESI and MALDI. ChemPhysChem. 19, 581–589 (2018)

  55. 55.

    Musapelo, T., Murray, K.K.: Particle production in reflection and transmission mode laser ablation: implications for laserspray ionization. J. Am. Soc. Mass Spectrom. 24, 1108–1115 (2013)

  56. 56.

    Musapelo, T., Murray, K.K.: Size distributions of ambient shock-generated particles: implications for inlet ionization. Rapid Commun. Mass Spectrom. 27, 1283–1286 (2013)

  57. 57.

    Trimpin, S., Zhang, W.Z., Lu, I-C., Elia, E., El-Baba, T.J., Lutomski, C.A., Fischer, J.L., Inutan, E.D., Foley, C.D., Weidner, S.M.: Mechanistic insights and practical utility of highly-charged protein ions on vacuum source mass spectrometers. 65th ASMS Conference on Mass Spectrometry and Allied Topics, Indianapolis, Indiana, June 4–8, (2017)

  58. 58.

    Trimpin, S., Karki, S., Marshall, D.D., Inutan, E.D., Meher, A.K., Madarshahian, S., Fenner, M., McEwen, C.N.: Combining novel and traditional ionization methods for mass spectrometry for more comprehensive analyses. LCGC North Am. 16, 12–17 (2018)

  59. 59.

    Inutan, E.D., Wager-Miller, J., Narayan, S.B., Mackie, K., Trimpin, S.: The potential for clinical applications using a new ionization method combined with ion mobility spectrometry-mass spectrometry. Int. J. Ion Mobility Spectrom. 16, 145–159 (2013)

  60. 60.

    Lee, C., Inutan, E.D., Chen, J.L., Mukeku, M.M., Weidner, S.M., Trimpin, S., Ni, C.K.: Toward understanding of the ionization mechanism of matrix-assisted ionization using mass spectrometry experiment and theory. Rapid Commun. Mass Spectrom. (2019). https://doi.org/10.1002/rcm.8382

  61. 61.

    Inutan, E.D., Wang, B., Trimpin, S.: Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions. Anal. Chem. 83, 678–684 (2011)

  62. 62.

    Inutan, E.D., El-Baba, T.J., Walker, A., Woodall, D.W., Stemmer, P.M., Foley, C.D., Cisneros, G.A., Clemmer, D.E., Trimpin S.: Ubiquitin ion structures from the solid state using nothing more than a small molecule and vacuum of an IMS-MS Instrument. 64th ASMS Conference on Mass Spectrometry and Allied Topics, San Antonio, Texas, June 5–9, (2016)

  63. 63.

    Richards, A.L., Lietz, C.B., Wager-Miller, J., Mackie, K., Trimpin, S.: Imaging mass spectrometry in transmission geometry. Rapid Commun. Mass Spectrom. 25, 815–820 (2011)

  64. 64.

    Wang, B., Trimpin, S.: High throughput solvent assisted ionization inlet (SAII) for use in mass spectrometry. Anal. Chem. 86, 1000–1006 (2014)

  65. 65.

    Karki, S., Meher, A.K., Inutan, E.D., Pophristic, M., Marshall, D.D., Rackers, K., Trimpin, S., McEwen, C.N.: Development of a robotics platform for automated multi-ionization mass spectrometry. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8449

  66. 66.

    von Helden, G., Hsu, M.T., Gotts, N., Bowers, M.T.: Carbon cluster cations with up to 84 atoms—structures, formation mechanism, and reactivity. J. Phys. Chem. 97, 8182–8192 (1993)

  67. 67.

    von Helden, G., Wyttenbach, T., Bowers, M.T.: Conformation of macromolecules in the gas-phase—use of matrix-assisted laser desorption methods in ion chromatography. Science. 267, 1483–1485 (1995)

  68. 68.

    Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Naked protein conformations—cytochrome-c in the gas-phase. J. Am. Chem. Soc. 117, 10141–10142 (1995)

  69. 69.

    Clemmer, D.E., Jarrold, M.F.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32, 577–592 (1997)

  70. 70.

    Jarrold, M.F.: Peptides and proteins in the vapor phase. Annual Rev. Phys. Chem. 51, 179–207 (2000)

  71. 71.

    Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H.R., Smith, R.D., Clemmer, D.E.: An IMS-IMS analogue of MS-MS. Anal. Chem. 78, 4161–4174 (2006)

  72. 72.

    Seo, J., Warnke, S., Pagel, K., Bowers, M.T., von Helden, G.: Infrared spectrum and structure of the homochiral serine octamer-dichloride complex. Nat. Chem. 9, 1263–1268 (2017)

  73. 73.

    El-Baba, T.J., Fuller, D.R., Hales, D.A., Russell, D.H., Clemmer, D.E.: Solvent mediation of peptide conformations: polyproline structures in water, methanol, ethanol, and 1-propanol as determined by ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 77–84 (2019)

  74. 74.

    Apsokardu, M.J., Kerecman, D.E., Johnston, M.V.: Ion formation in droplet assisted ionization. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8227

  75. 75.

    Skjærvø, Ø., Trimpin, S., Halvorsen, T.G.: Matrix assisted ionization mass spectrometry in targeted protein analysis – an initial evaluation. Rapid Commun. Mass Spectrom. (2019). https://doi.org/10.1002/rcm.8437

  76. 76.

    Li, X., Attanayake, K., Valentine, S.J., Li, P.: Vibrating sharp-edge spray ionization (VSSI) for voltage-free direct analysis of samples using mass spectrometry. Rapid Commun. Mass Spectrom. (2019). https://doi.org/10.1002/rcm.8232

  77. 77.

    Liyanage, R., Gidden, J., Wilkins, C.L., Lay Jr., J.O.: Matrix-assisted ionization Fourier transform mass spectrometry for the analysis of lipids. Rapid Commun. Mass Spectrom. (2019). https://doi.org/10.1002/rcm.8349

  78. 78.

    Zilch, L.W., Maze, J.T., Smith, J.W., Ewing, G.E., Jarrold, M.F.: Charge separation in the aerodynamic breakup of micrometer-sized water droplets. J. Phys. Chem. A. 112, 13352–11336 (2008)

  79. 79.

    Pagnotti, V.S., Chakrabarty, S., Wang, B., Trimpin, S., McEwen, C.N.: Gas-phase ions produced by freezing water or methanol for analysis using mass spectrometry. Anal. Chem. 86, 7343–7350 (2014)

  80. 80.

    Zhang, J., Rector, J., Lin, J.Q., Young, J.H., Sans, M., Katta, N., Giese, N., Yu, W., Nagi, C., Suliburk, J., Liu, J., Bensussan, A., DeHoog, R.J., Garza, K.Y., Ludolph, B., Sorace, A.G., Syed, A., Zahedivash, A., Milner, T.E., Eberlin, L.S.: Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 9, eaan3968 (2017)

  81. 81.

    Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70, 2236–2242 (1998)

  82. 82.

    Liu, X., Valentine, S.J., Plasencia, M.D., Trimpin, S., Naylor, S., Clemmer, D.E.: Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. 18, 1249–1264 (2007)

  83. 83.

    Trimpin, S., Inutan, E.D.: New ionization method for analysis on atmospheric pressure ionization mass spectrometers requiring only vacuum and matrix assistance. Anal. Chem. 85, 2005–2009 (2013)

  84. 84.

    Pierson, N.A., Chen, L., Valentine, S.J., Russell, D.H., Clemmer, D.E.: Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J. Am. Chem. Soc. 133, 13810–13813 (2011)

  85. 85.

    Trimpin, S., Rader, H.J., Mullen, K.: Investigations of theoretical principles for MALDI-MS derived from solvent-free sample preparation: part I: preorganization. Int. J. Mass Spectrom. 253, 13–21 (2006)

  86. 86.

    Page, J.S., Sweedler, J.V.: Sample depletion of the matrix-assisted laser desorption process monitored using radionuclide detection. Anal. Chem. 74, 6200–6204 (2002)

  87. 87.

    Lomeli, S.H., Peng, I.X., Yin, S., Ogorzalek Loo, R.R., Loo, J.A.: New reagents for increasing ESI multiple charging of proteins and protein complexes. J. Am. Soc. Mass. Spectrom. 21, 127–131 (2010)

  88. 88.

    Shelimov, K.B., Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J. Amer. Chem. Soc. 119, 2240–2248 (1997)

  89. 89.

    van den Heuvel, R.H., Heck, A.J.R.: Native protein mass spectrometry: from intact oligomers to functional machineries. Current Opinion Chem. Biol. 8, 519–526 (2004)

  90. 90.

    Hambly, D.M., Gross, M.L.: Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005)

  91. 91.

    Ruotolo, B.T., Robinson, C.V.: Aspects of native proteins are retained in vacuum. Current Opinion Chem. Biol. 10, 402–408 (2006)

  92. 92.

    Speers, A.E., Wu, C.C.: Proteomics of integral membrane proteins—theory and application. Chem. Rev. 107, 3687–3714 (2007)

  93. 93.

    Bohrer, B.C., Mererbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Book Series: Annual Rev. Anal. Chem. 1, 293–327 (2008)

  94. 94.

    Leitner, A., Walzthoeni, T., Kahraman, A., Herzog, F., Rinner, O., Beck, M., Aebersold, R.: Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Molecular & Cellular Proteomics. 9, 1634–1649 (2010)

  95. 95.

    Seo, J., Hoffmann, W., Warnke, S., Bowers, M.T., Pagel, K., von Helden, G.: Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew. Chem. Int. Ed. 55, 14173–14176 (2016)

  96. 96.

    Lutomski, C.A., Lyktey, N.A., Zhao, Z., Pierson, E.E., Zlotnick, A., Jarrold, M.F.: Hepatitis B virus capsid completion occurs through error correction. J. Am. Chem. Soc. 139, 16932–16938 (2017)

  97. 97.

    Poltash, M.L., McCabe, J.W., Shirzadeh, M., Laganowsky, A., Clowers, B.H., Russell, D.H.: Fourier transform-ion mobility-orbitrap mass spectrometer: a nextgeneration instrument for native mass spectrometry. Anal. Chem. 90, 10472–10478 (2018)

  98. 98.

    Poltash, M.L., McCabe, J.W., Patrick, J.W., Laganowsky, A., Russell, D.H.: Development and evaluation of a reverse-entry ion source orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 30, 192–198 (2019)

  99. 99.

    Karas, M., Glückmann, M., Schäfer, J.: Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 35, 1–12 (2000)

  100. 100.

    Inutan, E.D., Wager-Miller, J., Mackie, K., Trimpin, S.: Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source. Anal. Chem. 84, 9079–9084 (2012)

  101. 101.

    Harron, A.F., Hoang, K., McEwen, C.N.: High mass resolution tissue imaging at atmospheric pressure using laserspray ionization mass spectrometry. Int. J. Mass Spectrom. 352, 65–69 (2013)

  102. 102.

    Devereaux, Z.J., Reynolds, C.A., Fischer, J.L., Foley, C.D., DeLeeuw, J.L., Wager-Miller, J., Narayan, S.B., Mackie, K., Trimpin, S.: Matrix-assisted ionization (MAI) on a portable mass spectrometer: analysis directly from biological and synthetic materials. Anal. Chem. 88, 10831–10836 (2016)

  103. 103.

    El-Baba, T.J., Lutomski, C.A., Wang, B., Trimpin, S.: Characterizing synthetic polymers and additives using new ionization methods for mass spectrometry. Rapid Commun. Mass Spectrom. 28, 1175–1184 (2014)

  104. 104.

    Vickerman, J.C., Winograd, N.: SIMS—a precursor and partner to contemporary mass spectrometry. Int. J. Mass Spectrom. 377, 568–579 (2015)

  105. 105.

    Wang, B., Dearring, C.L., Wager-Miller, J., Mackie, K., Trimpin, S.: Drug detection and quantification directly from tissue using novel ionization methods for mass spectrometry. Eur. J. Mass Spectrom. 21, 201–210 (2015)

  106. 106.

    McEwen, C.N., Larsen, B.S., Trimpin, S.: Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions. Anal Chem. 82, 4998–5001 (2010)

  107. 107.

    Kurulugama, R.T., Valentine, S.J., Sowell, R.A., Clemmer, D.E.: Development of a high-throughput IMS-IMS-MS approach for analyzing mixtures of biomolecules. J. Proteomics. 71, 318–331 (2008)

  108. 108.

    Kim, T., Tang, K., Udseth, H.R., Smith, R.D.: A multicapillary inlet jet disruption electrodynamic ion funnel interface for improved sensitivity using atmospheric pressure ion sources. Anal. Chem. 73, 4162–4170 (2001)

  109. 109.

    Pagnotti, V.S., Inutan, E.D., Marshall, D.D., McEwen, C.N., Trimpin, S.: Solvent assisted inlet ionization: a new highly sensitive approach for liquid chromatography-mass spectrometry of small and large molecules. Anal. Chem. 83, 7591–7594 (2011)

  110. 110.

    Woodall, D.W., Wang, B., Inutan, E.D., Narayan, S.B., Trimpin, S.: High-throughput characterization of small and large molecules using only a matrix and the vacuum of a mass spectrometer. Anal. Chem. 87, 4667–4674 (2015)

  111. 111.

    Trimpin, S., Plasencia, M.D., Isailovic, D., Clemmer, D.E.: Resolving oligomers from fully grown polymers with IMS-MS. Anal. Chem. 79, 7965–7974 (2007)

  112. 112.

    Trimpin, S., Clemmer, D.E.: Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008)

  113. 113.

    Horan, A.J., Apsokardu, M.J., Johnston, M.V.: Droplet assisted inlet ionization for online analysis of airborne nanoparticles. Anal Chem. 89, 1059–1062 (2016)

  114. 114.

    Lutomski, C.A., El-Baba, T.J., Inutan, E.D., Manly, C.D., Trimpin, S.: Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet. Anal. Chem. 86, 6208–6213 (2014)

  115. 115.

    Espy, R.D., Wleklinski, M., Yan, X., Cooks, R.G.: Beyond the flask: reactions on the fly in ambient mass spectrometry. Trends Anal. Chem. 57, 135–146 (2014)

  116. 116.

    Neis, C., Merten, G.J., Hegetschweiler, K.: 4,6-Dinitropyrogallol. Acta Crystallogr. Sect. E Struct. Rep. Online. 68, o695 (2012)

  117. 117.

    Fischer, K.: Neues Verfahren zur Maßanalytischen Bestimmung des Wassergehaltes von Flüssigkeiten und Festen Körpern. Angew. Chem. 48, 394–396 (1935)

  118. 118.

    Wilm, M.S., Mann, M.: Electrospray and Taylor-Cone Theory, Dole’s beam of macromolecules at last? Int. J. Mass Spectrom. 136, 167–180 (1994)

  119. 119.

    Hoang, K., Pophristic, M., Horan, A.J., Johnston, M.V., McEwen, C.N.: High sensitivity analysis of nanoliter volumes of volatile and nonvolatile compounds using matrix assisted ionization (MAI) mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 1591–1596 (2016)

Download references

Acknowledgements

The authors are grateful for funding and support from NSF CHE-1411376 (to ST) and NSF Phase II 1556043 including TECP (to CNM and ST). We thank Dr. Philip Martin, WSU, for the X-ray measurements. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Correspondence to Sarah Trimpin.

Electronic Supplementary Material

(MP4 49325 kb)

ESM 1

(PDF 3.18 mb)

Movie S1

(mov 139036 kb)

Movie S2

(MP4 49325 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trimpin, S., Inutan, E.D., Karki, S. et al. Fundamental Studies of New Ionization Technologies and Insights from IMS-MS. J. Am. Soc. Mass Spectrom. 30, 1133–1147 (2019) doi:10.1007/s13361-019-02194-7

Download citation

Keywords

  • Inlet ionization
  • Vacuum ionization
  • Matrices
  • Inlets
  • Fundamentals
  • Ion mobility