Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes

  • Marius M. Kostelic
  • Alex M. Ryan
  • Deseree J. Reid
  • Jibriel M. Noun
  • Michael T. MartyEmail author
Focus: Emerging Investigators: Research Article


Native mass spectrometry (MS) has become an important tool for the analysis of membrane proteins. Although detergent micelles are the most commonly used method for solubilizing membrane proteins for native MS, nanoscale lipoprotein complexes such as nanodiscs are emerging as a promising complementary approach because they solubilize membrane proteins in a lipid bilayer environment. However, prior native MS studies of intact nanodiscs have employed only a limited set of phospholipids that are similar in mass. Here, we extend the range of lipids that are amenable to native MS of nanodiscs by combining lipids with masses that are simple integer multiples of each other. Although these lipid combinations create complex distributions, overlap between resonant peak series allows interpretation of nanodisc spectra containing glycolipids, sterols, and cardiolipin. We also investigate the gas-phase stability of nanodiscs with these new lipids towards collisional activation. We observe that negative ionization mode or charge reduction stabilizes nanodiscs and is essential to preserving labile lipids such as sterols. These new approaches to native MS of nanodiscs will enable future studies of membrane proteins embedded in model membranes that more accurately mimic natural bilayers.

Graphical Abstract


Native mass spectrometry Nanodiscs Cholesterol Cardiolipin Glycolipid Saposin 



The authors thank Maria Reinhardt-Szyba, Kyle Fort, and Alexander Makarov at Thermo Fisher Scientific for their support on the UHMR Q-Exactive HF instrument. The pMSP1D1 plasmid was a gift from Stephen Sligar (Addgene plasmid #20061). The authors thank Christian Loew and Joanna Pieprzyk for providing the SapA plasmid and Elaine Marzluff for helpful discussions. This work was funded by the Bisgrove Scholar Award from Science Foundation Arizona, the American Society for Mass Spectrometry Research Award, and National Institute of General Medical Sciences and National Institutes of Health (Award Number R35 GM128624) to M.T.M. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Supplementary material

13361_2019_2174_MOESM1_ESM.pdf (19.7 mb)
ESM 1 (PDF 20197 kb)


  1. 1.
    Allison, T.M., Landreh, M.: Ion mobility in structural biology. Advances in Ion Mobility-Mass Spectrometry: Fundamentals, Instrumentation and Applications, p. 161–195. Elsevier, (2019)Google Scholar
  2. 2.
    Calabrese, A.N., Radford, S.E.: Mass spectrometry-enabled structural biology of membrane proteins. Methods. 147, 187–205 (2018)CrossRefGoogle Scholar
  3. 3.
    Kaur, U., Johnson, D.T., Chea, E.E., Deredge, D., Espino, J.A., Jones, L.M.: Evolution of structural biology through the lens of mass spectrometry. Anal Chem. 91, 142–155 (2019)Google Scholar
  4. 4.
    Marty, M.T., Hoi, K.K., Robinson, C.V.: Interfacing membrane mimetics with mass spectrometry. Acc. Chem. Res. 49, 2459–2467 (2016)CrossRefGoogle Scholar
  5. 5.
    Calabrese, A.N., Watkinson, T.G., Henderson, P.J.F., Radford, S.E., Ashcroft, A.E.: Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal. Chem. 87, 1118–1126 (2015)CrossRefGoogle Scholar
  6. 6.
    Watkinson, T.G., Calabrese, A.N., Giusti, F., Zoonens, M., Radford, S.E., Ashcroft, A.E.: Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. Int. J. Mass Spectrom. 391, 54–61 (2015)CrossRefGoogle Scholar
  7. 7.
    Leney, A.C., McMorran, L.M., Radford, S.E., Ashcroft, A.E.: Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84, 9841–9847 (2012)CrossRefGoogle Scholar
  8. 8.
    Hopper, J.T., Yu, Y.T., Li, D., Raymond, A., Bostock, M., Liko, I., Mikhailov, V., Laganowsky, A., Benesch, J.L., Caffrey, M., Nietlispach, D., Robinson, C.V.: Detergent-free mass spectrometry of membrane protein complexes. Nat. Methods. 10, 1206–1208 (2013)CrossRefGoogle Scholar
  9. 9.
    Hellwig, N., Peetz, O., Ahdash, Z., Tascon, I., Booth, P.J., Mikusevic, V., Diskowski, M., Politis, A., Hellmich, Y., Hanelt, I., Reading, E., Morgner, N.: Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chem. Commun. 54, 13702–13705 (2018)CrossRefGoogle Scholar
  10. 10.
    Chorev, D.S., Baker, L.A., Wu, D., Beilsten-Edmands, V., Rouse, S.L., Zeev-Ben-Mordehai, T., Jiko, C., Samsudin, F., Gerle, C., Khalid, S., Stewart, A.G., Matthews, S.J., Grünewald, K., Robinson, C.V.: Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science. 362, 829–834 (2018)CrossRefGoogle Scholar
  11. 11.
    van Dyck, J.F., Konijnenberg, A., Sobott, F.: Native mass spectrometry for the characterization of structure and interactions of membrane proteins. In: Lacapere, J.-J. (ed.) Membrane Protein Structure and Function Characterization: Methods and Protocols, pp. 205–232. Springer New York, New York, NY (2017)CrossRefGoogle Scholar
  12. 12.
    Reid, D.J., Keener, J.E., Wheeler, A.P., Zambrano, D.E., Diesing, J.M., Reinhardt-Szyba, M., Makarov, A., Marty, M.T.: Engineering nanodisc scaffold proteins for native mass spectrometry. Anal. Chem. 89, 11189–11192 (2017)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Liu, L., Daneshfar, R., Kitova, E.N., Li, C., Jia, F., Cairo, C.W., Klassen, J.S.: Protein-glycosphingolipid interactions revealed using catch-and-release mass spectrometry. Anal. Chem. 84, 7618–7621 (2012)CrossRefGoogle Scholar
  14. 14.
    Han, L., Morales, L.C., Richards, M.R., Kitova, E.N., Sipione, S., Klassen, J.S.: Investigating the influence of membrane composition on protein-glycolipid binding using nanodiscs and proxy ligand electrospray ionization mass spectrometry. Anal. Chem. 89, 9330–9338 (2017)CrossRefGoogle Scholar
  15. 15.
    Li, J., Richards, M.R., Kitova, E.N., Klassen, J.S.: Delivering transmembrane peptide complexes to the gas phase using nanodiscs and electrospray ionization. J. Am. Soc. Mass Spectrom. 28, 2054–2065 (2017)CrossRefGoogle Scholar
  16. 16.
    Marty, M.T., Hoi, K.K., Gault, J., Robinson, C.V.: Probing the lipid annular belt by gas-phase dissociation of membrane proteins in nanodiscs. Angew Chem Int Ed Engl. 55, 550–554 (2016)CrossRefGoogle Scholar
  17. 17.
    Keener, J.E., Zambrano, D.E., Zhang, G., Zak, C.K., Reid, D.J., Deodhar, B.S., Pemberton, J.E., Prell, J.S., Marty, M.T.: Chemical additives enable native mass spectrometry measurement of membrane protein oligomeric state within intact nanodiscs. J. Am. Chem. Soc. 141, 1054–1061 (2019)CrossRefGoogle Scholar
  18. 18.
    Hoi, K.K., Robinson, C.V., Marty, M.T.: Unraveling the composition and behavior of heterogeneous lipid nanodiscs by mass spectrometry. Anal. Chem. 88, 6199–6204 (2016)CrossRefGoogle Scholar
  19. 19.
    Popovic, K., Holyoake, J., Pomès, R., Privé, G.G.: Structure of Saposin A lipoprotein discs. Proc. Natl. Acad. Sci. 109, 2908–2912 (2012)CrossRefGoogle Scholar
  20. 20.
    Flayhan, A., Mertens, H.D.T., Ural-Blimke, Y., Martinez Molledo, M., Svergun, D.I., Löw, C.: Saposin lipid nanoparticles: a highly versatile and modular tool for membrane protein research. Structure. 26, 345–355.e345 (2018)CrossRefGoogle Scholar
  21. 21.
    Frauenfeld, J., Löving, R., Armache, J.-P., Sonnen, A., Guettou, F., Moberg, P., Zhu, L., Jegerschöld, C., Flayhan, A., Briggs, J.A.G., Garoff, H., Löw, C., Cheng, Y., Nordlund, P.: A novel lipoprotein nanoparticle system for membrane proteins. Nat. Methods. 13, 345–351 (2016)CrossRefGoogle Scholar
  22. 22.
    Leney, A.C., Rezaei Darestani, R., Li, J., Nikjah, S., Kitova, E.N., Zou, C., Cairo, C.W., Xiong, Z.J., Prive, G.G., Klassen, J.S.: Picodiscs for facile protein-glycolipid interaction analysis. Anal. Chem. 87, 4402–4408 (2015)CrossRefGoogle Scholar
  23. 23.
    Li, J., Fan, X., Kitova, E.N., Zou, C., Cairo, C.W., Eugenio, L., Ng, K.K.S., Xiong, Z.J., Prive, G.G., Klassen, J.S.: Screening glycolipids against proteins in vitro using picodiscs and catch-and-release electrospray ionization-mass spectrometry. Anal. Chem. 88, 4742–4750 (2016)CrossRefGoogle Scholar
  24. 24.
    Li, J., Richards, M.R., Bagal, D., Campuzano, I.D.G., Kitova, E.N., Xiong, Z.J., Prive, G.G., Klassen, J.S.: Characterizing the size and composition of Saposin A lipoprotein picodiscs. Anal. Chem. 88, 9524–9531 (2016)CrossRefGoogle Scholar
  25. 25.
    Li, J., Han, L., Li, J., Kitova, E.N., Xiong, Z.J., Prive, G.G., Klassen, J.S.: Detecting protein-glycolipid interactions using CaR-ESI-MS and model membranes: comparison of pre-loaded and passively loaded picodiscs. J. Am. Soc. Mass Spectrom. 29, 1493–1504 (2018)CrossRefGoogle Scholar
  26. 26.
    Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., Sligar, S.G.: Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. In: Nejat, D. (ed.) Methods Enzymol, pp. 211–231. Academic Press, San Diego, CA (2009)Google Scholar
  27. 27.
    Lyons, J.A., Bøggild, A., Nissen, P., Frauenfeld, J.: Saposin-lipoprotein scaffolds for structure determination of membrane transporters. In: Ziegler C (ed.) Methods Enzymol., p. 85–99. Academic Press, (2017)Google Scholar
  28. 28.
    Reid, D.J., Diesing, J.M., Miller, M.A., Perry, S.M., Wales, J.A., Montfort, W.R., Marty, M.T.: MetaUniDec: high-throughput deconvolution of native mass spectra. J. Am. Soc. Mass Spectrom. 30, 118–127 (2019)CrossRefGoogle Scholar
  29. 29.
    van de Waterbeemd, M., Fort, K.L., Boll, D., Reinhardt-Szyba, M., Routh, A., Makarov, A., Heck, A.J.: High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat. Methods. 14, 283–286 (2017)CrossRefGoogle Scholar
  30. 30.
    Marty, M.T., Baldwin, A.J., Marklund, E.G., Hochberg, G.K., Benesch, J.L., Robinson, C.V.: Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015)CrossRefGoogle Scholar
  31. 31.
    Characterization of compositional heterogeneity in intact nanodisc ions containing two different types of lipids using fourier-transformed mass spectra, Prell, J.S., Cleary, S.P.; ID 293709, June 4, Proceedings of the 66th ASMS Conference on Mass Spectrometry and Allied Topics, San Diego, Ca, June 3–June 7, 2018Google Scholar
  32. 32.
    Yuan, C., Furlong, J., Burgos, P., Johnston, L.J.: The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys. J. 82, 2526–2535 (2002)CrossRefGoogle Scholar
  33. 33.
    Simons, K., Sampaio, J.L.: Membrane organization and lipid rafts. Cold Sptring Harb Perspect Biol. 3, a004697 (2011)Google Scholar
  34. 34.
    Chini, B., Parenti, M.: G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats. J. Mol. Endocrinol. 42, 371–379 (2009)CrossRefGoogle Scholar
  35. 35.
    Goddard, A.D., Watts, A.: Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol. 10, 27–30 (2012)CrossRefGoogle Scholar
  36. 36.
    Marcoux, J., Wang, S.C., Politis, A., Reading, E., Ma, J., Biggin, P.C., Zhou, M., Tao, H., Zhang, Q., Chang, G., Morgner, N., Robinson, C.V.: Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc. Natl. Acad. Sci. 110, 9704–9709 (2013)CrossRefGoogle Scholar
  37. 37.
    Patrick, J.W., Boone, C.D., Liu, W., Conover, G.M., Liu, Y., Cong, X., Laganowsky, A.: Allostery revealed within lipid binding events to membrane proteins. Proc. Natl. Acad. Sci. 115, 2976–2981 (2018)CrossRefGoogle Scholar
  38. 38.
    Corey, R.A., Pyle, E., Allen, W.J., Watkins, D.W., Casiraghi, M., Miroux, B., Arechaga, I., Politis, A., Collinson, I.: Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proc. Natl. Acad. Sci. 115, 7967–7972 (2018)CrossRefGoogle Scholar
  39. 39.
    Schmidt, V., Sidore, M., Bechara, C., Duneau, J.P., Sturgis, J.N.: The lipid environment of Escherichia coli aquaporin Z. Biochim. Biophys. Acta Biomembr. 1861, 431–440 (2019)CrossRefGoogle Scholar
  40. 40.
    Gupta, K., Donlan, J.A.C., Hopper, J.T.S., Uzdavinys, P., Landreh, M., Struwe, W.B., Drew, D., Baldwin, A.J., Stansfeld, P.J., Robinson, C.V.: The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 541, 421–424 (2017)CrossRefGoogle Scholar
  41. 41.
    Martens, C., Stein, R.A., Masureel, M., Roth, A., Mishra, S., Dawaliby, R., Konijnenberg, A., Sobott, F., Govaerts, C., McHaourab, H.S.: Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat. Struct. Mol. Biol. 23, 744–751 (2016)CrossRefGoogle Scholar
  42. 42.
    Nguyen, N.X., Armache, J.-P., Lee, C., Yang, Y., Zeng, W., Mootha, V.K., Cheng, Y., Bai, X.-c., Jiang, Y.: Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature. 559, 570–574 (2018)CrossRefGoogle Scholar
  43. 43.
    Kintzer, A.F., Green, E.M., Dominik, P.K., Bridges, M., Armache, J.P., Deneka, D., Kim, S.S., Hubbell, W., Kossiakoff, A.A., Cheng, Y., Stroud, R.M.: Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc. Natl. Acad. Sci. 115, E9095–E9104 (2018)CrossRefGoogle Scholar
  44. 44.
    Bayburt, T.H., Grinkova, Y.V., Sligar, S.G.: Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA

Personalised recommendations