Advertisement

Fundamental Studies on Poly(2-oxazoline) Side Chain Isomers Using Tandem Mass Spectrometry and Ion Mobility-Mass Spectrometry

  • Jean R. N. HalerEmail author
  • Victor R. de la Rosa
  • Philippe Massonnet
  • Johann Far
  • Richard Hoogenboom
  • Edwin De Pauw
Research Article

Abstract

When polymer mixtures become increasingly complex, the conventional analysis techniques become insufficient for complete characterization. Mass spectrometric techniques can satisfy this increasing demand for detailed sample characterization. Even though isobaric polymers are indistinguishable using simple mass spectrometry (MS) analyses, more advanced techniques such as tandem MS (MS/MS) or ion mobility (IM) can be used. Here, we report proof of concept for characterizing isomeric polymers, namely poly(2-n-propyl-2-oxazoline) (Pn-PrOx) and poly(2-isopropyl-2-oxazoline) (Pi-PrOx), using MS/MS and IM-MS. Pi-PrOx ions lose in intensity at higher accelerating voltages than Pn-PrOx ions during collision-induced dissociation (CID) MS/MS experiments. A Pn/i-PrOx mixture could also be titrated using survival yield calculations of either precursor ions or cation ejection species. IM-MS yielded shape differences in the degree of polymerization (DP) regions showing the structural rearrangements. Combined MS techniques are thus able to identify and deconvolute the molar mass distributions of the two isomers in a mixture. Finally, the MS/MS and IM-MS behaviors are compared for interpretation.

Graphical Abstract

.

Keywords

Poly(2-oxazoline)s Synthetic polymer isomers Tandem mass spectrometry MS/MS Collision-induced dissociation Ion mobility-mass spectrometry 

Notes

Acknowledgements

The authors acknowledge the financial support of the F.R.S.-FNRS (FRIA). R. Hoogenboom acknowledges financial support from FWO and Ghent University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no competing interests.

Supplementary material

13361_2019_2173_MOESM1_ESM.pdf (2.5 mb)
ESM 1 (PDF 2584 kb)

References

  1. 1.
    Young, R.J., Lovell, P.A.: Introduction to Polymers. CRC PRESS (2011)Google Scholar
  2. 2.
    Jeanne Dit Fouque, D., Maroto, A., Memboeuf, A.: Purification and quantification of an isomeric compound in a mixture by collisional excitation in multistage mass spectrometry experiments. Anal. Chem. 88, 10821–10825 (2016)CrossRefGoogle Scholar
  3. 3.
    Josse, T., De Winter, J., Dubois, P., Coulembier, O., Gerbaux, P., Memboeuf, A.: A tandem mass spectrometry-based method to assess the architectural purity of synthetic polymers: a case of a cyclic polylactide obtained by click chemistry. Polym. Chem. 6, 64–69 (2015)CrossRefGoogle Scholar
  4. 4.
    Nasioudis, A., Memboeuf, A., Heeren, R.M.A., Smith, D.F., Vékey, K., Drahos, L., Van Den Brink, O.F.: Discrimination of polymers by using their characteristic collision energy in tandem mass spectrometry. Anal. Chem. 82, 9350–9356 (2010)CrossRefGoogle Scholar
  5. 5.
    Li, X., Chan, Y.T., Newkome, G.R., Wesdemiotis, C.: Gradient tandem mass spectrometry interfaced with ion mobility separation for the characterization of supramolecular architectures. Anal. Chem. 83, 1284–1290 (2011)CrossRefGoogle Scholar
  6. 6.
    Yol, A.M., Dabney, D.E., Wang, S.F., Laurent, B.A., Foster, M.D., Quirk, R.P., Grayson, S.M., Wesdemiotis, C.: Differentiation of linear and cyclic polymer architectures by MALDI tandem mass spectrometry (MALDI-MS2). J. Am. Soc. Mass Spectrom. 24, 74–82 (2013)CrossRefGoogle Scholar
  7. 7.
    Memboeuf, A., Jullien, L., Lartia, R., Brasme, B., Gimbert, Y.: Tandem mass spectrometric analysis of a mixture of isobars using the survival yield technique. J. Am. Soc. Mass Spectrom. 22, 1744–1752 (2011)CrossRefGoogle Scholar
  8. 8.
    Gies, A.P., Kliman, M., McLean, J.A., Hercules, D.M.: Characterization of branching in aramid polymers studied by MALDI-ion mobility/mass spectrometry. Macromolecules. 41, 8299–8301 (2008)CrossRefGoogle Scholar
  9. 9.
    Bagal, D., Zhang, H., Schnier, P.D.: Gas-phase proton-transfer chemistry coupled with TOF mass spectrometry and ion mobility-MS for the facile analysis of poly(ethylene glycols) and PEGylated polypeptide conjugates. Anal. Chem. 80, 2408–2418 (2008)CrossRefGoogle Scholar
  10. 10.
    Trimpin, S., Clemmer, D.E.: Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008)CrossRefGoogle Scholar
  11. 11.
    Hoskins, J.N., Trimpin, S., Grayson, S.M.: Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry-mass spectrometry. Macromolecules. 44, 6915–6918 (2011)CrossRefGoogle Scholar
  12. 12.
    Morsa, D., Defize, T., Dehareng, D., Jérôme, C., De Pauw, E.: Polymer topology revealed by ion mobility coupled with mass spectrometry. Anal. Chem. 86, 9693–9700 (2014)CrossRefGoogle Scholar
  13. 13.
    Foley, C.D., Zhang, B., Alb, A.M., Trimpin, S., Grayson, S.M.: Use of ion mobility spectrometry-mass spectrometry to elucidate architectural dispersity within star polymers. ACS Macro Lett. 4, 778–782 (2015)CrossRefGoogle Scholar
  14. 14.
    Haler, J.R.N., Far, J., Aqil, A., Claereboudt, J., Tomczyk, N., Giles, K., Jérôme, C., De Pauw, E.: Multiple gas-phase conformations of a synthetic linear poly(acrylamide) polymer observed using ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2492–2499 (2017)CrossRefGoogle Scholar
  15. 15.
    Haler, J.R.N., Massonnet, P., Chirot, F., Kune, C., Comby-Zerbino, C., Jordens, J., Honing, M., Mengerink, Y., Far, J., Dugourd, P., De Pauw, E.: Comparison of different ion mobility setups using poly (ethylene oxide) PEO polymers: drift tube, TIMS, and T-Wave. J. Am. Soc. Mass Spectrom. 29, 114–120 (2018)CrossRefGoogle Scholar
  16. 16.
    Farenc, M., Witt, M., Craven, K., Barrère-Mangote, C., Afonso, C., Giusti, P.: Characterization of polyolefin pyrolysis species produced under ambient conditions by Fourier transform ion cyclotron resonance mass spectrometry and ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 507–514 (2017)CrossRefGoogle Scholar
  17. 17.
    Barrère, C., Selmi, W., Hubert-Roux, M., Coupin, T., Assumani, B., Afonso, C., Giusti, P.: Rapid analysis of polyester and polyethylene blends by ion mobility-mass spectrometry. Polym. Chem. 5, 3576–3582 (2014)CrossRefGoogle Scholar
  18. 18.
    Liu, X., Cool, L.R., Lin, K., Kasko, A.M., Wesdemiotis, C.: Tandem mass spectrometry and ion mobility mass spectrometry for the analysis of molecular sequence and architecture of hyperbranched glycopolymers. Analyst. 140, 1182–1191 (2015)CrossRefGoogle Scholar
  19. 19.
    Hilton, G.R., Jackson, A.T., Thalassinos, K., Scrivens, J.H.: Structural analysis of synthetic polymer mixtures using ion mobility and tandem mass spectrometry. Anal. Chem. 80, 9720–9725 (2008)CrossRefGoogle Scholar
  20. 20.
    Shi, C., Gerişlioğlu, S., Wesdemiotis, C.: Ultrahigh performance liquid chromatography interfaced with mass spectrometry and orthogonal ion mobility separation for the microstructure characterization of amphiphilic block copolymers. Chromatographia. 79, 961–969 (2016)CrossRefGoogle Scholar
  21. 21.
    Hoogenboom, R.: 50 years of poly(2-oxazoline)s. Eur. Polym. J. 88, 448–450 (2017)CrossRefGoogle Scholar
  22. 22.
    Viegas, T.X., Fang, Z., Yoon, K., Weimer, R., Dizman, B.: 6 - Poly(oxazolines) A2 - Parambath, Anilkumar. In: Engineering of Biomaterials for Drug Delivery Systems, pp. 173–198. Woodhead Publishing (2018)Google Scholar
  23. 23.
    Altuntaş, E., Kempe, K., Crecelius, A., Hoogenboom, R., Schubert, U.S.: ESI-MS & MS/MS analysis of poly(2-oxazoline)s with different side groups. Macromol. Chem. Phys. 211, 2312–2322 (2010)CrossRefGoogle Scholar
  24. 24.
    Altuntaş, E., Weber, C., Kempe, K., Schubert, U.S.: Comparison of ESI, APCI and MALDI for the (tandem) mass analysis of poly(2-ethyl-2-oxazoline)s with various end-groups. Eur. Polym. J. 49, 2172–2185 (2013)CrossRefGoogle Scholar
  25. 25.
    Baumgaertel, A., Weber, C., Knop, K., Crecelius, A., Schubert, U.S.: Characterization of different poly(2-ethyl-2-oxazoline)s via matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 756–762 (2009)CrossRefGoogle Scholar
  26. 26.
    Baumgaertel, A., Weber, C., Fritz, N., Festag, G., Altuntaş, E., Kempe, K., Hoogenboom, R., Schubert, U.S.: Characterization of poly(2-oxazoline) homo- and copolymers by liquid chromatography at critical conditions. J. Chromatogr. A. 1218, 8370–8378 (2011)CrossRefGoogle Scholar
  27. 27.
    Chojnacka, A., Kempe, K., van de Ven, H.C., Englert, C., Hoogenboom, R., Schubert, U.S., Janssen, H.-G., Schoenmakers, P.: Molar mass, chemical-composition, and functionality-type distributions of poly(2-oxazoline)s revealed by a variety of separation techniques. J. Chromatogr. A. 1265, 123–132 (2012)CrossRefGoogle Scholar
  28. 28.
    Biri, B., Nagy, L., Kuki, Á., Tőke Enikő, R., Deák, G., Zsuga, M., Kéki, S.: Collision-induced dissociation study of poly(2-ethyl-2-oxazoline) using survival yields and breakdown curves. J. Mass Spectrom. 48, 16–23 (2012)CrossRefGoogle Scholar
  29. 29.
    Sahn, M., Bandelli, D., Dirauf, M., Weber, C., Schubert Ulrich, S.: Bifunctional initiators as tools to track chain transfer during the CROP of 2-Oxazolines. Macromol. Rapid Commun. 38, 1700396 (2017)CrossRefGoogle Scholar
  30. 30.
    Atılkan, N., Nur, Y., Hacaloglu, J., Schlaad, H.: Direct insertion mass spectrometric analysis of thermal degradation of poly(2-alkyl-2-oxazoline). Macromol. Chem. Phys. 213, 945–951 (2012)CrossRefGoogle Scholar
  31. 31.
    Verbraeken, B., Lava, K., Hoogenboom, R.: Poly(2-oxazoline)s. In: Encyclopedia of Polymer Science and Technology, pp. 1–51. John Wiley & Sons, Inc., Hoboken, NJ, USA (2014)Google Scholar
  32. 32.
    Hoogenboom, R.: Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew. Chemie - Int. Ed. 48, 7978–7994 (2009)CrossRefGoogle Scholar
  33. 33.
    de la Rosa, V.R., Tempelaar, S., Dubois, P., Hoogenboom, R., Mespouille, L.: Poly(2-ethyl-2-oxazoline)-block-polycarbonate block copolymers: from improved end-group control in poly(2-oxazoline)s to chain extension with aliphatic polycarbonate through a fully metal-free ring-opening polymerisation process. Polym. Chem. 7, 1559–1568 (2016)CrossRefGoogle Scholar
  34. 34.
    Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)CrossRefGoogle Scholar
  35. 35.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)CrossRefGoogle Scholar
  36. 36.
    Altuntas, E., Weber, C., Schubert, U.S.: Detailed characterization of poly(2-ethyl-2oxazoline)s by energy variable collision-induced dissociation study. Rapid Commun. Mass Spectrom. 27, 1095–1100 (2013)CrossRefGoogle Scholar
  37. 37.
    Kuki, Á., Nagy, L., Shemirani, G., Memboeuf, A., Drahos, L., Vékey, K., Zsuga, M., Kéki, S.: A simple method to estimate relative stabilities of polyethers cationized by alkali metal ions. Rapid Commun. Mass Spectrom. 26, 304–308 (2012)CrossRefGoogle Scholar
  38. 38.
    Memboeuf, A., Nasioudis, A., Indelicato, S., Pollreisz, F., Kuki, Á., Kéki, S., Van Den Brink, O.F., Vékey, K., Drahos, L.: Size effect on fragmentation in tandem mass spectrometry. Anal. Chem. 82, 2294–2302 (2010)CrossRefGoogle Scholar
  39. 39.
    Baumgaertel, A., Altuntaş, E., Kempe, K., Crecelius, A., Schubert, U.S.: Characterization of different poly(2-oxazoline) block copolymers by MALDI-TOF MS/MS and ESI-Q-TOF MS/MS. J. Polym. Sci. Part A Polym. Chem. 48, 5533–5540 (2010)CrossRefGoogle Scholar
  40. 40.
    Kuki, Á., Nagy, L., Memboeuf, A., Drahos, L., Vékey, K., Zsuga, M., Kéki, S.: Energy-dependent collision-induced dissociation of lithiated polytetrahydrofuran: effect of the size on the fragmentation properties. J. Am. Soc. Mass Spectrom. 21, 1753–1761 (2010)CrossRefGoogle Scholar
  41. 41.
    Haler, J.R.N., Massonnet, P., Far, J., de la Rosa, V.R., Lecomte, P., Hoogenboom, R., Jérôme, C., De Pauw, E.: Gas-phase dynamics of collision induced unfolding, collision induced dissociation, and electron transfer dissociation-activated polymer ions. J. Am. Soc. Mass Spectrom. 1–10 (2018)Google Scholar
  42. 42.
    Larriba, C., Fernandez De La Mora, J.: The gas phase structure of coulombically stretched polyethylene glycol ions. J. Phys. Chem. B. 116, 593–598 (2012)CrossRefGoogle Scholar
  43. 43.
    De Winter, J., Lemaur, V., Ballivian, R., Chirot, F., Coulembier, O., Antoine, R., Lemoine, J., Cornil, J., Dubois, P., Dugourd, P., Gerbaux, P.: Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling. Chem. - A Eur. J. 17, 9738–9745 (2011)CrossRefGoogle Scholar
  44. 44.
    Haler, J.R.N., Morsa, D., Lecomte, P., Jérôme, C., Far, J., De Pauw, E.: Predicting ion mobility-mass spectrometry trends of polymers using the concept of apparent densities. Methods. 144, 125–133 (2018)CrossRefGoogle Scholar
  45. 45.
    Trimpin, S., Plasencia, M., Isailovic, D., Clemmer, D.E.: Resolving oligomers from fully grown polymers with IMS-MS. Anal. Chem. 79, 7965–7974 (2007)CrossRefGoogle Scholar
  46. 46.
    Kune, C., Far, J., De Pauw, E.: Accurate drift time determination by traveling wave ion mobility spectrometry: the concept of the diffusion calibration. Anal. Chem. 88, 11639–11646 (2016)CrossRefGoogle Scholar
  47. 47.
    Goossens, H., Catak, S., Glassner, M., de la Rosa, V.R., Monnery, B.D., De Proft, F., Van Speybroeck, V., Hoogenboom, R.: Cationic ring-opening polymerization of 2-propyl-2-oxazolines: understanding structural effects on polymerization behavior based on molecular modeling. ACS Macro Lett. 2, 651–654 (2013)CrossRefGoogle Scholar
  48. 48.
    Shemirani, G., Kéki, S.: Collision Induced Dissociation Study of Polyethers, (2015)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Mass Spectrometry Laboratory, MolSys Research unit, Quartier AgoraUniversity of LiègeLiègeBelgium
  2. 2.Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular ChemistryGhent UniversityGhentBelgium

Personalised recommendations