Structural Analysis of Polyurethane Monomers by Pyrolysis GC TOFMS via Dopant-Assisted Atmospheric Pressure Chemical Ionization

  • Evan A. Larson
  • Junghyun Lee
  • Andrew Paulson
  • Young Jin LeeEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article


Polyurethane is one of the most widely used copolymers and is formed by the cross-linking of isocyanates and polyols. Its physical properties have a strong dependence on the monomer structures, making it very important to characterize the monomers in polyurethane. In this study, we developed a method to analyze unknown polyurethane samples using pyrolysis gas chromatography time-of-flight mass spectrometry (Py-GC-TOFMS) with dopant-assisted atmospheric pressure chemical ionization (dAPCI). A set of standard polyurethane foams produced with several different monomers are analyzed by Py-GC-TOFMS. GC-dAPCI-TOFMS is a high-resolution, soft ionization method for GC-MS analysis that provides accurate mass information of GC separated molecules. The data obtained by this approach could effectively classify different monomers using principal component analysis (PCA), grouping polymers with the same monomers, and providing structural features significant to each monomer. Furthermore, characteristic compounds are identified using in-source collision-induced dissociation (CID) and CSI:FingerID analysis. In contrast, the same set of samples analyzed by Py-GC-electron ionization (EI)-MS could only partially separate some of the monomers.

Graphical Abstract



Pyrolysis Polyurethane GC-MS High-resolution mass spectrometry APCI CSI:FingerID Principal component analysis 



We acknowledge Steve Veysey and Kamel Harrata in the Iowa State Chemical Instrumentation Facility for assistance with Py-GC-EI-MS instrumentation.

Funding Information

This project is funded by Hyundai Motor Company.

Supplementary material

13361_2019_2165_MOESM1_ESM.pdf (580 kb)
ESM 1 (PDF 580 kb)
13361_2019_2165_MOESM2_ESM.xlsx (11 kb)
ESM 2 (XLSX 11 kb)


  1. 1.
    Maxwell, J.: Plastics in the automotive industry. Woodhead, Warrendale (1994)CrossRefGoogle Scholar
  2. 2.
    Chattopadhyay, D.K., Webster, D.C.: Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34, 1068–1133 (2009)CrossRefGoogle Scholar
  3. 3.
    Yilgör, I., Yilgör, E., Wilkes, G.L.: Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer. 58, A1–A36 (2015)CrossRefGoogle Scholar
  4. 4.
    Engels, H.-W., Pirkl, H.-G., Albers, R., Albach, R.W., Krause, J., Hoffmann, A., Casselmann, H., Dormish, J.: Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 52, 9422–9441 (2013)CrossRefGoogle Scholar
  5. 5.
    Font, R., Fullana, A., Caballero, J.A., Candela, J., Garcı́a, A.: Pyrolysis study of polyurethane. J. Anal. Appl. Pyrolysis. 58–59, 63–77 (2001)CrossRefGoogle Scholar
  6. 6.
    Han, B., Vial, J., Inaba, M., Sablier, M.: Analytical characterization of East Asian handmade papers: a combined approach using Py-GCxGC/MS and multivariate analysis. J. Anal. Appl. Pyrolysis. 127, 150–158 (2017)CrossRefGoogle Scholar
  7. 7.
    Hiltz, J.A.: Analytical pyrolysis gas chromatography/mass spectrometry (py-GC/MS) of poly(ether urethane)s, poly(ether urea)s and poly(ether urethane-urea)s. J. Anal. Appl. Pyrolysis. 113, 248–258 (2015)CrossRefGoogle Scholar
  8. 8.
    Cole, D.P., Lee, Y.J.: Effective evaluation of catalytic deoxygenation for in situ catalytic fast pyrolysis using gas chromatography–high resolution mass spectrometry. J. Anal. Appl. Pyrolysis. 112, 129–134 (2015)CrossRefGoogle Scholar
  9. 9.
    Larson, E.A., Hutchinson, C.P., Lee, Y.J.: Gas chromatography-tandem mass spectrometry of lignin Pyrolyzates with dopant-assisted atmospheric pressure chemical ionization and molecular structure search with CSI:FingerID. J. Am. Soc. Mass Spectrom. 29, 1908–1918 (2018)CrossRefGoogle Scholar
  10. 10.
    Hutchinson, C.P., Lee, Y.J.: Evaluation of primary reaction pathways in thin-film pyrolysis of glucose using 13 C labeling and real-time monitoring. ACS Sustain. Chem. Eng. 5, 8796–8803 (2017)CrossRefGoogle Scholar
  11. 11.
    Szymanski, H., Salinas, C., Kwitowski, P.: A technique for pyrolysing or vaporizing samples for gas chromatographic analysis. Nature. 188, 403–404 (1960)CrossRefGoogle Scholar
  12. 12.
    He, J.-J., Jiang, L., Sun, J.-H., Lo, S.: Thermal degradation study of pure rigid polyurethane in oxidative and non-oxidative atmospheres. J. Anal. Appl. Pyrolysis. 120, 269–283 (2016)CrossRefGoogle Scholar
  13. 13.
    Rosu, D., Tudorachi, N., Rosu, L.: Investigations on the thermal stability of a MDI based polyurethane elastomer. J. Anal. Appl. Pyrolysis. 89, 152–158 (2010)CrossRefGoogle Scholar
  14. 14.
    Lattimer, R.P., Williams, R.C.: Low-temperature pyrolysis products from a polyether-based urethane. J. Anal. Appl. Pyrolysis. 63, 85–104 (2002)CrossRefGoogle Scholar
  15. 15.
    La Nasa, J., Biale, G., Ferriani, B., Colombini, M.P., Modugno, F.: A pyrolysis approach for characterizing and assessing degradation of polyurethane foam in cultural heritage objects. J. Anal. Appl. Pyrolysis. 134, 562–57 (2018).Google Scholar
  16. 16.
    Lattimer, R.P., Muenster, H., Budzikiewicz, H.: Pyrolysis tandem mass spectrometry (Py-MS/MS) of a segmented polyurethane. J. Anal. Appl. Pyrolysis. 17, 237–249 (1990)CrossRefGoogle Scholar
  17. 17.
    Ohtani, H., Kimura, T., Okamoto, K., Tsuge, S., Nagataki, Y., Miyata, K.: Characterization of polyurethanes by high-resolution pyrolysis-capillary gas chromatography. J. Anal. Appl. Pyrolysis. 12, 115–133 (1987)CrossRefGoogle Scholar
  18. 18.
    Lattimer, R.P., Polce, M.J.: Direct probe CI-MS and APCI-MS for direct materials analysis. J. Anal. Appl. Pyrolysis. 92, 355–360 (2011)CrossRefGoogle Scholar
  19. 19.
    Liaw, S.-S., Haber Perez, V., Zhou, S., Rodriguez-Justo, O., Garcia-Perez, M.: Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. J. Anal. Appl. Pyrolysis. 109, 140–151 (2014)CrossRefGoogle Scholar
  20. 20.
    Meier, D., Fortmann, I., Odermatt, J., Faix, O.: Discrimination of genetically modified poplar clones by analytical pyrolysis–gas chromatography and principal component analysis. J. Anal. Appl. Pyrolysis. 74, 129–137 (2005)CrossRefGoogle Scholar
  21. 21.
    Beverly, M.B., Kay, P.T., Voorhees, K.J.: Principal component analysis of the pyrolysis-mass spectra from African, Africanized hybrid, and European beeswax. J. Anal. Appl. Pyrolysis. 34, 251–263 (1995)CrossRefGoogle Scholar
  22. 22.
    Bajoub, A., Pacchiarotta, T., Hurtado-Fernández, E., Olmo-García, L., García-Villalba, R., Fernández-Gutiérrez, A., Mayboroda, O.A., Carrasco-Pancorbo, A.: Comparing two metabolic profiling approaches (liquid chromatography and gas chromatography coupled to mass spectrometry) for extra-virgin olive oil phenolic compounds analysis: a botanical classification perspective. J. Chromatogr. A. 1428, 267–279 (2016)CrossRefGoogle Scholar
  23. 23.
    Hurtado-Fernández, E., Pacchiarotta, T., Mayboroda, O.A., Fernández-Gutiérrez, A., Carrasco-Pancorbo, A.: Quantitative characterization of important metabolites of avocado fruit by gas chromatography coupled to different detectors (APCI-TOF MS and FID). Food Res. Int. 62, 801–811 (2014)CrossRefGoogle Scholar
  24. 24.
    Chen, H., Liang, H., Ding, J., Lai, J., Huan, Y., Qiao, X.: Rapid differentiation of tea products by surface desorption atmospheric pressure chemical ionization mass spectrometry. J. Agric. Food Chem. 55, 10093–10100 (2007)CrossRefGoogle Scholar
  25. 25.
    Hutchinson, C.P., Cole, D.P., Dalluge, E.A., Larson, E.A., Lee, Y.J.: Novel instrumentation for tracking molecular products in fast pyrolysis of carbohydrates with sub-second temporal resolution. J. Anal. Appl. Pyrolysis. 136, 107–114 (2018)CrossRefGoogle Scholar
  26. 26.
    Dührkop, K., Shen, H., Meusel, M., Rousu, J., Böcker, S.: Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. 112, 12580–12585 (2015)CrossRefGoogle Scholar
  27. 27.
    Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S., Xia, J.: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018)CrossRefGoogle Scholar
  28. 28.
    Tersac, G.: Chemistry and technology of polyols for polyurethanes. Milhail Ionescu. Rapra Technology, Shrewsbury, UK. Polym. Int. 56, 820–820 (2007)CrossRefGoogle Scholar
  29. 29.
    Kumagai, S., Motokucho, S., Yabuki, R., Anzai, A., Kameda, T., Watanabe, A., Nakatani, H., Yoshioka, T.: Effects of hard- and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane elastomers. J. Anal. Appl. Pyrolysis. 126, 337–345 (2017)CrossRefGoogle Scholar
  30. 30.
    Sonnenschein, M.F.: Polyurethanes: Science, Technology, Markets, and Trends. Wiley, Hoboken (2015)Google Scholar
  31. 31.
    Forsythe, J.G., Stow, S.M., Nefzger, H., Kwiecien, N.W., May, J.C., McLean, J.A., Hercules, D.M.: Structural characterization of methylenedianiline regioisomers by ion mobility-mass spectrometry, tandem mass spectrometry, and computational strategies: I. Electrospray spectra of 2-ring isomers. Anal. Chem. 86, 4362–4370 (2014)CrossRefGoogle Scholar
  32. 32.
    Madan, S., Slack, W.E., Capelli, J.M.: Flexible foams and flexible molded foams based on liquid isocyanate-terminated allophanate-modified MDI prepolymer blends and processes for the production of these foams,, (1998)
  33. 33.
    Cole, D.P., Smith, E.A., Dalluge, D., Wilson, D.M., Heaton, E.A., Brown, R.C., Lee, Y.J.: Molecular characterization of nitrogen-containing species in switchgrass bio-oils at various harvest times. Fuel. 111, 718–726 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryIowa State UniversityAmesUSA
  2. 2.Materials Technology & Analysis TeamHyundai Motor CompanyHwaseong-SiSouth Korea

Personalised recommendations