Advertisement

Increasing the Upper Mass/Charge Limit of a Quadrupole Ion Trap for Ion/Ion Reaction Product Analysis via Waveform Switching

  • Kenneth W. Lee
  • Gregory S. Eakins
  • Mark S. Carlsen
  • Scott A. McLuckeyEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article

Abstract

Quadrupole ion traps (QITs) are versatile platforms for performing experiments with gas-phase ions due to their abilities to store ions of both polarities and to conduct MSn experiments. The QIT is particularly useful as a reaction cell for ion/ion reactions. In the case of an ion/ion reaction experiment in a QIT, multiply charged reactant ions may initially be of relatively low m/z (e.g., m/z < 1000) whereas the product ions can be one or more orders of magnitude higher in m/z (e.g., m/z > 100,000). Several factors can limit the m/z range over which an ion/ion reaction experiment can be conducted. These include (1) the efficiency of the detector, (2) the m/z range over which oppositely charged ions can be mutually stored, and (3) the m/z range over which ions can be mass selectively ejected into an external detector. High-frequency waveforms provide larger m/z trapping ranges for mutual storage of oppositely charged ions whereas low-frequency waveforms provide better trapping for very high m/z product ions. Presented here is a method that switches from a high-frequency sine wave prior to and during an ion/ion reaction to a low-frequency square wave to eject low m/z reagent ions and improves confinement of the product ions before mass-selective ejection by scanning the frequency of the square wave. This approach addresses the third issue, which is the primary limiting factor with QITs operated at high RF (e.g., > 900 MHz).

Graphical Abstract

Keywords

Quadrupole ion trap Ion/ion reactions Digital ion trap High-mass ion 

Notes

Acknowledgements

This work was supported by the National Institutes of Health (NIH) under Grant GM R37-45372. Dr. Jeixun Bu and Dr. Eric Dziekonski are acknowledged for initiating our efforts with DIT technology as is the Purdue Chemistry Department’s Jonathan Amy Facility for Chemical Instrumentation for its role in developing and building the custom electronics used in this research.

References

  1. 1.
    March, R.E., Todd, J.F.J.: Quadrupole ion trap mass spectrometry, 2nd edn. Wiley-Interscience, Hoboken (2005)CrossRefGoogle Scholar
  2. 2.
    Louris, J.N., Brodbelt-Lustig, J.S., Cooks, R.G., Glish, G.L., Van Berkel, G.J., McLuckey, S.A.: Sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer. Int. J. Mass Spectrom. Ion Process. 96, 117–137 (1990)CrossRefGoogle Scholar
  3. 3.
    Johnson, J.V., Yost, R.A., Kelley, P.E., Bradford, D.C.: Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Anal. Chem. 62, 2162–2172 (1990)CrossRefGoogle Scholar
  4. 4.
    Louris, J.N., Cooks, R.G., Syka, J.E.P., Kelley, P.E., Stafford, G.C., Todd, J.F.J.: Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass spectrometry. Anal. Chem. 59, 1677–1685 (1987)CrossRefGoogle Scholar
  5. 5.
    Brodbelt, J.S., Wilson, J.J.: Infrared multiphoton dissociation in quadrupole ion traps. Mass Spectrom. Rev. 28, 390–424 (2009)CrossRefGoogle Scholar
  6. 6.
    Louris, J.N., Brodbelt, J.S., Cooks, R.G.: Photodissociation in a quadrupole ion trap mass spectrometer using a fiber optic interface. Int. J. Mass Spectrom. Ion Process. 75, 345–352 (1987)CrossRefGoogle Scholar
  7. 7.
    Brodbelt, J.S.: Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem. Soc. Rev. 43, 2757–2783 (2014)CrossRefGoogle Scholar
  8. 8.
    Vedel, F., Vedel, M., Brodbelt, J.S.: In: March, R.E., Todd, J.F.J. (eds.) Ion/molecule reactions, practical aspects of ion trap mass spectrometry, p. 1., Ch. 8. CRC Press, Boca Raton (1995)Google Scholar
  9. 9.
    Fenn, J., Mann, M., Meng, C., Wong, S., Whitehouse, C.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64–71 (1989)CrossRefGoogle Scholar
  10. 10.
    Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J., Udseth, H.R.: New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem. 62, 882–899 (1990)CrossRefGoogle Scholar
  11. 11.
    Van Berkel, G.J., Glish, G.L., McLuckey, S.A.: Electrospray ionization combined with ion trap mass spectrometry. Anal. Chem. 62, 1284–1295 (1990)CrossRefGoogle Scholar
  12. 12.
    McLuckey, S.A., Stephenson Jr., J.L.: Ion/ion chemistry of high-mass multiply charged ions. Mass Spectrom. Rev. 17, 369–407 (1998)CrossRefGoogle Scholar
  13. 13.
    Pitteri, S.J., McLuckey, S.A.: Recent developments in the ion/ion chemistry of high-mass multiply charged ions. Mass Spectrom. Rev. 24, 931–958 (2005)CrossRefGoogle Scholar
  14. 14.
    Prentice, B.M., McLuckey, S.A.: Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries. Chem. Commun. 49, 947–965 (2013)CrossRefGoogle Scholar
  15. 15.
    Stephenson Jr., J.L., McLuckey, S.A.: Ion/ion reactions for oligopeptide mixture analysis: application to mixtures comprised of 0.5-100 kDa components. J. Am. Soc. Mass Spectrom. 9, 585–596 (1998)CrossRefGoogle Scholar
  16. 16.
    McLuckey, S.A., Reid, G.E., Wells, J.M.: Ion parking during ion/ion reactions in electrodynamic ion traps. Anal. Chem. 74, 336–346 (2002)CrossRefGoogle Scholar
  17. 17.
    Stephenson Jr., J.L., McLuckey, S.A.: Simplification of product ion spectra derived from multiply-charged parent ions via ion/ion chemistry. Anal. Chem. 70, 3533–3544 (1998)CrossRefGoogle Scholar
  18. 18.
    He, M., Emory, J.F., McLuckey, S.A.: Reagent anions for charge inversion of polypeptide/protein cations in the gas phase. Anal. Chem. 77, 3173–3182 (2005)CrossRefGoogle Scholar
  19. 19.
    Konermann, L., Ahadi, E., Rodriguez, A.D., Vahidi, S.: Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013)CrossRefGoogle Scholar
  20. 20.
    Leney, A.C., Heck, A.J.R.: Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017)CrossRefGoogle Scholar
  21. 21.
    Stafford Jr., G.C., Kelley, P.E., Syka, J.E.P., Reynolds, W.E., Todd, J.F.J.: Recent improvements in and analytical applications of advanced ion trap mass spectrometry. Int. J. Mass Spectrom. Ion Process. 60, 85–98 (1984)CrossRefGoogle Scholar
  22. 22.
    McLuckey, S.A., Glish, G.L., Asano, K.G., Grant, B.C.: Atmospheric sampling glow discharge ionization source for the analysis of trace organics in ambient air. Anal. Chem. 60, 2220–2228 (1988)CrossRefGoogle Scholar
  23. 23.
    Van Berkel, G.J., Asano, K.G., Schnier, P.D.: Electrochemical processes in a wire-in-a-capillary bulk-loaded, nano-electrospray emitter. J. Am. Soc. Mass Spectrom. 12, 853–862 (2001)CrossRefGoogle Scholar
  24. 24.
    Douglas, D.J., Berdnikov, A.S., Konenkov, N.V.: The effective potential for ion motion in a radio frequency quadrupole field revisited. Int. J. Mass Spectrom. 377, 345–354 (2015)CrossRefGoogle Scholar
  25. 25.
    Wuerker, R.F., Shelton, H., Langmuir, R.V.: Electrodynamic containment of charged particles. J. Appl. Phys. 30, 342–349 (1959)CrossRefGoogle Scholar
  26. 26.
    Dehmelt, H.G.: Radiofrequency spectroscopy of stored ions I: storage. In: Bates, D.R. (ed.) Advances in Atomic and Molecular Physics, vol. 3, pp. 53–72. Academic, New York (1967)Google Scholar
  27. 27.
    Kaiser Jr., R.E., Cooks, R.G., Stafford Jr., G.C., Syka, J.E.P., Hemberger, P.H.: Operation of a quadrupole ion trap mass spectrometer to achieve high mass/charge ratios. Int. J. Mass Spectrom. Ion Process. 106, 79–115 (1991)CrossRefGoogle Scholar
  28. 28.
    Nie, Z., Cui, F., Chu, M., Chen, C.-H., Chang, H.-C., Cai, Y.: Calibration of a frequency-scan quadrupole ion trap mass spectrometer for microparticle mass analysis. Int. J. Mass Spectrom. 270, 8–15 (2008)CrossRefGoogle Scholar
  29. 29.
    Snyder, D.T., Pulliam, C.J., Wiley, J.S., Duncan, J., Cooks, R.G.: Experimental characterization of secular frequency scanning in ion trap mass spectrometers. J. Am. Soc. Mass Spectrom. 27, 1243–1255 (2016)CrossRefGoogle Scholar
  30. 30.
    Todd, J.F.J., Penman, A.D., Smith, R.D.: Some alternative scanning methods for the ion trap mass spectrometer. Int. J. Mass Spectrom. Ion Process. 106, 117–135 (1991)CrossRefGoogle Scholar
  31. 31.
    Prentice, B.M., McLuckey, S.A.: Analysis of high m/z ions in a quadrupole ion trap mass spectrometer via an end-cap quadrupolar DC downscan. Anal. Chem. 84, 7562–7569 (2012)CrossRefGoogle Scholar
  32. 32.
    Schlunegger, U.P., Stoeckli, M., Caprioli, R.M.: Frequency scan for the analysis of high mass ions generated by matrix-assisted laser desorption/ionization in a Paul trap. Rapid Commun. Mass Spectrom. 13, 1792–1796 (1999)CrossRefGoogle Scholar
  33. 33.
    Landais, B., Beaugrand, C., Capron-Dukan, L., Sablier, M., Simonneau, G., Rolando, C.: Varying the radio frequency: a new scanning mode for quadrupole analyzers. Rapid Commun. Mass Spectrom. 12, 302–306 (1998)CrossRefGoogle Scholar
  34. 34.
    Ding, L., Sudakov, M., Kumashiro, S.: A simulation study of the digital ion trap mass spectrometer. Int. J. Mass Spectrom. 221, 117–138 (2002)CrossRefGoogle Scholar
  35. 35.
    Ding, L., Sudakov, M., Brancia, F.L., Giles, R., Kumashiro, S.: A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. J. Mass Spectrom. 39, 471–484 (2004)CrossRefGoogle Scholar
  36. 36.
    Hoffman, N.M., Gotlib, Z.P., Opacic, B., Huntley, S.P., Moon, A.M., Donahoe, K.E.G., Brabeck, G.F., Reilly, P.T.A.: Digital waveform technology and the next generation of mass spectrometers. J. Am. Soc. Mass Spectrom. 29, 331–341 (2018)CrossRefGoogle Scholar
  37. 37.
    Brancia, F.L., Ding, L.: Rectangular waveform driven digital ion trap (DIT) mass spectrometer: theory and applications practical aspects of ion trap mass spectrometry. In: March, R.E., Todd, J.F.J. (eds.) , vol. IV., Ch. 4. CRC Press, Boca Raton (2010)Google Scholar
  38. 38.
    Reilly, P.T.A., Brabeck, G.F.: Mapping the pseudopotential well for all values of the Mathieu parameter q in digital and sinusoidal ion traps. Int. J. Mass Spectrom. 392, 86–90 (2015)CrossRefGoogle Scholar
  39. 39.
    McLuckey, S.A., Wu, J., Bundy, J.L., Stephenson, J.L., Hurst, G.B.: Oligonucleotide mixture analysis via electrospray and ion/ion reactions in a quadrupole ion trap. Anal. Chem. 74, 976–984 (2002)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations