Advertisement

Internal Energy Distribution of Secondary Ions Under Argon and Bismuth Cluster Bombardments: “Soft” Versus “Hard” Desorption–Ionization Process

  • Tingting Fu
  • Serge Della-Negra
  • David TouboulEmail author
  • Alain Brunelle
Research Article

Abstract

The emission/ionization process under massive argon cluster bombardment was investigated by measuring the internal energy distributions of a series of benzylpyridinium ions. Argon clusters with kinetic energies between 10 and 20 keV and cluster sizes ranging from 500 to 10,000 were used to establish the influence of their size, energy, and velocity on the internal energy distribution of the secondary ions. It is shown that the internal energy distribution of secondary ions principally depends on the energy per atom or the velocity of the cluster ion beam (E/nv2). Under low energy per atom (E/n ˂ 10 eV), the mean internal energy and fragmentation yield increase rapidly with the incident energy of individual constituents. Beyond 10 eV/atom impact (up to 40 eV/atom), the internal energy reaches a plateau and remains constant. Results were compared with those generated from bismuth cluster impacts for which the mean internal energies correspond well to the plateau values for argon clusters. However, a significant difference was found between argon and bismuth clusters concerning the damage or disappearance cross section. A 20 times smaller disappearance cross section was measured under 20 keV Ar2000+ impact compared to 25 keV Bi5+ bombardment, thus quantitatively showing the low damage effect of large argon clusters for almost the same molecular ion yield.

Graphical Abstract

Keywords

TOF-SIMS Internal energy Bismuth cluster Argon cluster Benzylpyridinium ion 

Notes

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (grant ANR-2015-CE29-0007-01 DEFIMAGE). TF would like to acknowledge financial support from China Scholarship Council (CSC, No. 201406310013) for her PhD studies [25].

Supplementary material

13361_2018_2090_MOESM1_ESM.docx (5.1 mb)
Fig. S1 (DOCX 5177 kb)
13361_2018_2090_MOESM2_ESM.docx (3.3 mb)
Fig. S2 (DOCX 3345 kb)

References

  1. 1.
    Benninghoven, A., Jaspers, D., Sichtermann, W.: Secondary-ion emission of amino acids. Appl. Phys. 11, 35–39 (1976)CrossRefGoogle Scholar
  2. 2.
    Benninghoven, A., Hagenhoff, B., Niehuis, E.: Surface MS: probing real-world samples. Anal. Chem. 65, 630A–640A (1993)CrossRefGoogle Scholar
  3. 3.
    Appelhans, A.D., Delmore, J.E., Dahl, D.A.: Focused, rasterable, high-energy neutral molecular beam probe for secondary ion mass spectrometry. Anal. Chem. 59, 1685–1691 (1987)CrossRefGoogle Scholar
  4. 4.
    Gillen, G., Roberson, S.: Preliminary evaluation of an SF5 polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid Comm. Mass Spectrom. 12, 1303–1312 (1998)CrossRefGoogle Scholar
  5. 5.
    Blain, M.G., Della-Negra, S., Joret, H., Le Beyec, Y., Schweikert, E.A.: Secondary-ion yields from surfaces bombarded with keV molecular and cluster ions. Phys. Rev. Lett. 63, 1625–1628 (1989)CrossRefGoogle Scholar
  6. 6.
    Benguerba, M., Brunelle, A., Della-Negra, S., Depauw, J., Joret, H., Le Beyec, Y., Blain, M.G., Schweikert, E.A., Ben Assayag, G., Sudraud, P.: Impact of slow gold cluster on various solids: nonlinear effects in secondary ion emission. Nucl. Instrum. Methods Phys. Res. B. 62, 8–22 (1991)CrossRefGoogle Scholar
  7. 7.
    Touboul, D., Kollmer, F., Niehuis, E., Brunelle, A., Laprévote, O.: Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Soc. Mass Spectrom. 16, 1608–1618 (2005)CrossRefGoogle Scholar
  8. 8.
    Boussofiane-Baudin, K., Bolbach, G., Brunelle, A., Della-Negra, S., Håkansson, P., Le Beyec, Y.: Secondary ion emission under cluster impact at low energies (5-60 keV); influence of the number of atoms in the projectile. Nucl. Instrum. Methods Phys. Res. B. 88, 160–163 (1994)CrossRefGoogle Scholar
  9. 9.
    Weibel, D., Wong, S., Lockyer, N., Blenkinsopp, P., Hill, R., Vickerman, J.C.: A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal. Chem. 75, 1754–1764 (2003)CrossRefGoogle Scholar
  10. 10.
    Fletcher, J.S., Lockyer, N.P., Vickerman, J.C.: Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrom. Rev. 30, 142–174 (2011)CrossRefGoogle Scholar
  11. 11.
    Robinson, M.A., Graham, D.J., Castner, D.G.: ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts. Anal. Chem. 84, 4880–4885 (2012)CrossRefGoogle Scholar
  12. 12.
    Tian, H., Six, D.A., Krucker, T., Leeds, J.A., Winograd, N.: Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry. Anal. Chem. 89, 5050–5057 (2017)CrossRefGoogle Scholar
  13. 13.
    Yamada, I., Matsuo, J., Toyoda, N., Kirkpatrick, A.: Materials processing by gas cluster ion beams. Mater. Sci. Eng. R. 34, 231–295 (2001)CrossRefGoogle Scholar
  14. 14.
    Ninomiya, S., Nakata, Y., Ichiki, K., Seki, T., Aoki, T., Matsuo, J.: Measurements of secondary ions emitted from organic compounds bombarded with large gas cluster ions. Nucl. Instrum. Methods Phys. Res. B. 256, 493–496 (2007)CrossRefGoogle Scholar
  15. 15.
    Ninomiya, S., Nakata, Y., Honda, Y., Ichiki, K., Seki, T., Aoki, T., Matsuo, J.: A fragment-free ionization technique for organic mass spectrometry with large Ar cluster ions. Appl. Surf. Sci. 255, 1588–1590 (2008)CrossRefGoogle Scholar
  16. 16.
    De Pauw, E., Pelzer, G., Marien, J., Natalis, P.: Internal energy distribution of ions emitted in secondary ion mass spectrometry. Springer Proc. Phys. 9, 103–108 (1986)CrossRefGoogle Scholar
  17. 17.
    Derwa, F., De Pauw, E., Natalis, P.: New basis for a method for the estimation of secondary ion internal energy distribution in ‘soft’ ionization techniques. Org. Mass Spectrom. 26, 117–118 (1991)CrossRefGoogle Scholar
  18. 18.
    Luo, G., Marginean, I., Vertes, A.: Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem. 74, 6185–6190 (2002)CrossRefGoogle Scholar
  19. 19.
    Collette, C., De Pauw, E.: Calibration of the internal energy distribution of ions produced by electrospray. Rapid Comm. Mass Spectrom. 12, 165–170 (1998)CrossRefGoogle Scholar
  20. 20.
    Touboul, D., Jecklin, M.C., Zenobi, R.: Ion internal energy distributions validate the charge residue model for small molecule ion formation by spray methods. Rapid Comm. Mass. Spectrom. 22, 1062–1068 (2008)CrossRefGoogle Scholar
  21. 21.
    DeBord, J.D., Verkhoturov, S.V., Perez, L.M., North, S.W., Hall, M.B., Schweikert, E.A.: Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions. J. Chem. Phys. 138, 214301 (2013)CrossRefGoogle Scholar
  22. 22.
    DeBord, J.D., Fernandez-Lima, F.A., Verkhoturov, S.V., Schweikert, E.A., Della-Negra, S.: Characteristics of positive and negative secondary ions emitted from Au3 + and Au400 +4 impacts. Surf. Interface Anal. 45, 134–137 (2013)CrossRefGoogle Scholar
  23. 23.
    Brunelle, A., Touboul, D., Laprévote, O.: Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. J. Mass Spectrom. 40, 985–999 (2005)CrossRefGoogle Scholar
  24. 24.
    Kayser, S., Rading, D., Moellers, R., Kollmer, F., Niehuis, E.: Surface spectrometry using large argon clusters. Surf. Interface Anal. 45, 131–133 (2013)CrossRefGoogle Scholar
  25. 25.
    Fu T. 3D and high sensitivity micrometric mass spectrometry imaging. Ph.D. Thesis, Analytical Chemistry, Université Paris-Saclay, 2017; https://tel.archives-ouvertes.fr/tel-01699065v2/document. Accessed May 24, 2018.
  26. 26.
    Gabelica, V., De Pauw, E.: Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 24, 566–587 (2005)CrossRefGoogle Scholar
  27. 27.
    Reed, L.J., Berkson, J.: The application of the logistic function to experimental data. J. Phys. Chem. 33, 760–779 (1929)CrossRefGoogle Scholar
  28. 28.
    Barylyuk, K.V., Chingin, K., Balabin, R.M., Zenobi, R.: Fragmentation of benzylpyridinium “thermometer” ions and its effect on the accuracy of internal energy calibration. J. Am. Soc. Mass Spectrom. 21, 172–177 (2010)CrossRefGoogle Scholar
  29. 29.
    Gnaser, H., Ichiki, K., Matsuo, J.: Strongly reduced fragmentation and soft emission processes in sputtered ion formation from amino acid films under large Arn + (n ≤ 2200) cluster ion bombardment. Rapid Commun. Mass Spectrom. 26, 1–8 (2012)CrossRefGoogle Scholar
  30. 30.
    Rzeznik, L., Czerwinski, B., Garrison, B.J., Winograd, N., Postawa, Z.: Molecular dynamics simulations of sputtering of organic overlayers by slow, large clusters. Appl. Surf. Sci. 255, 841–843 (2008)CrossRefGoogle Scholar
  31. 31.
    Rzeznik, L., Czerwinski, B., Garrison, B.J., Winograd, N., Postawa, Z.: Microscopic insight into the sputtering of thin polystyrene films on Ag{111} induced by large and slow Ar clusters. J. Phys. Chem. C. 112, 521–531 (2008)CrossRefGoogle Scholar
  32. 32.
    Delcorte, A., Garrison, B.J., Hamraoui, K.: Dynamics of molecular impacts on soft materials: from fullerenes to organic nanodrops. Anal. Chem. 81, 6676–6686 (2009)CrossRefGoogle Scholar
  33. 33.
    Russo, M.F., Garrison, B.J.: Mesoscale energy deposition footprint model for kiloelectronvolt cluster bombardment of solids. Anal. Chem. 78, 7206–7210 (2006)CrossRefGoogle Scholar
  34. 34.
    Luxembourg, S.L., Heeren, R.M.A.: Fragmentation at and above surfaces in SIMS: effects of biomolecular yield enhancing surface modifications. Int. J. Mass Spectrom. 253, 181–192 (2006)CrossRefGoogle Scholar
  35. 35.
    Kötter, F., Benninghoven, A.: Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5 + ion bombardment. Appl. Surf. Sci. 133, 47–57 (1998)CrossRefGoogle Scholar
  36. 36.
    Rabbani, S., Barber, A.M., Fletcher, J.S., Lockyer, N.P., Vickerman, J.C.: TOF-SIMS with argon gas cluster ion beams: a comparison with C60+. Anal. Chem. 83, 3793–3800 (2011)CrossRefGoogle Scholar
  37. 37.
    Shard, A.G., Havelund, R., Seah, M.P., Spencer, S.J., Gilmore, I.S., Winograd, N., Mao, D., Miyayama, T., Niehuis, E., Rading, D., Moellers, R.: Argon cluster ion beams for organic depth profiling: results from a VAMAS interlaboratory study. Anal. Chem. 84, 7865–7873 (2012)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Institut de Chimie des Substances Naturelles, CNRS UPR 2301Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.Institut de Physique Nucléaire, UMR 8608, IN2P3-CNRSUniversité University Paris-Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations