Advertisement

Quantifying SIMS of Organic Mixtures and Depth Profiles—Characterizing Matrix Effects of Fragment Ions

  • M. P. SeahEmail author
  • R. Havelund
  • S. J. Spencer
  • I. S. Gilmore
Research Article

Abstract

Sets of matrix factors, Ξ, are reported for the first time for secondary ions in secondary ion mass spectrometry for several binary organic systems. These show the interplay of the effects of ion velocity, fragment chemistry, and the secondary ion point of origin. Matrix factors are reported for negative ions for Irganox 1010 with FMOC or Irganox 1098 and, for both positive and negative ions, with Ir(ppy)2(acac). For Irganox 1010/FMOC, the Ξ values for Irganox 1010 fall with m/z, whereas those for FMOC rise. For m/z < 250, Ξ scales very approximately with (m/z)0.5, supporting a dependence on the ion velocity at low mass. Low-mass ions generally have low matrix factors but |Ξ| may still exceed 0.5 for m/z < 50. Analysis of ion sequences with addition or loss of a hydrogen atom shows that the Ξ values for Irganox 1010 and FMOC ions change by − 0.026 and 0.24 per hydrogen atom, respectively, arising from the changing charge transfer rate constant. This effect adds to that of velocity and may be associated with the nine times more hydrogen atoms in the Irganox 1010 molecule than in FMOC. For Irganox 1098/Irganox 1010, the molecular similarity leads to small |Ξ|, except for the pseudo molecular ions where the behavior follows Irganox 1010/FMOC. For Ir(ppy)2(acac)/Irganox 1010, the positive secondary ions show twice the matrix effects of negative ions. These data provide the first overall assessment of matrix factors in organic mixtures necessary for improved understanding for quantification and the precise localization of species.

Graphical Abstract

Keywords

Analysis Matrix factors Organic solid mixtures Quantification Secondary ion mass spectrometry SIMS 

Notes

Acknowledgements

The authors would like to thank M. Wywijas and S. A. Smith for the preparation of the samples used in this study and A G Shard for helpful comments. This work forms part of the “3D OrbiSIMS” project in the Life-science and Health programme of the National Measurement System of the UK Department of Business, Energy and Industrial strategy. This work has received funding from the 3DMetChemIT project of the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

13361_2018_2086_MOESM1_ESM.pdf (158 kb)
ESM 1 (PDF 157 kb)

References

  1. 1.
    Jones, E.A., Lockyer, N.P., Vickerman, J.C.: Suppression and enhancement of non-native molecules within biological systems. Appl. Surf. Sci. 252, 6727–6730 (2006)CrossRefGoogle Scholar
  2. 2.
    Karras, G., Lockyer, N.P.: Quantitative surface analysis of a binary drug mixture – suppression effects in the detection of sputtered ions and post-ionized neutrals. J. Am. Soc. Mass Spectrom. 25, 832–840 (2014)CrossRefGoogle Scholar
  3. 3.
    Alnajeebi, A.M., Vickerman, J.C., Lockyer, N.P.: Matrix effects in biological SIMS using cluster ion beams of different composition. BioInterphases. 11, 02A317-1–02A317-4 (2016)CrossRefGoogle Scholar
  4. 4.
    Shard, A.G., Rafati, A., Ogaki, R., Lee, J.L.S., Hutton, S., Mishra, G., Davies, M., Alexander, M.R.: Organic depth profiling of a binary system: the compositional effect on secondary ion yield and a model for charge transfer during secondary ion emission. J. Phys. Chem. B. 113, 11574–11582 (2009)CrossRefGoogle Scholar
  5. 5.
    Shard, A.G., Spencer, S.J., Smith, S.A., Havelund, R., Gilmore, I.S.: The matrix effect in organic secondary ion mass spectrometry. Int. J. Mass Spectrom. 377, 599–609 (2015)CrossRefGoogle Scholar
  6. 6.
    Seah, M.P., Shard, A.G.: The matrix effect in secondary ion mass spectrometry. Appl. Surf. Sci. 439, 605–611 (2018)CrossRefGoogle Scholar
  7. 7.
    Seah, M.P., Havelund, R., Gilmore, I.S.: SIMS of delta layers in organic materials – amount of substance, secondary ion species, matrix effects and anomalous structures in argon gas cluster depth profiles. J. Phys. Chem. C. 120, 26328–26335 (2016)CrossRefGoogle Scholar
  8. 8.
    Havelund, R., Seah, M.P., Gilmore, I.S.: SIMS of organic materials – interface location in argon gas cluster depth profiles. J. Am. Soc. Mass Spectrom. 29, 774–785 (2018)CrossRefGoogle Scholar
  9. 9.
    Delcorte, A.: Matrix-enhanced secondary ion mass spectrometry: the Alchemist’s solution. Appl. Surf. Sci. 252, 6582–6587 (2006)CrossRefGoogle Scholar
  10. 10.
    Jones, E.A., Lockyer, N.P., Kordys, J., Vickerman, J.C.: Suppression and enhancement of secondary ion formation due to the chemical environment in static-secondary ion mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 1559–1567 (2007)CrossRefGoogle Scholar
  11. 11.
    Mouhib, T., Delcorte, A., Poleunis, C., Bertrand, P.: Organic secondary ion mass spectrometry: signal enhancement by water vapor injection. J. Am. Soc. Mass Spectrom. 21, 2005–2010 (2010)CrossRefGoogle Scholar
  12. 12.
    Sheraz, S.n.R., Barber, A., Fletcher, J.S., Lockyer, N.P., Vickerman, J.C.: Enhancing secondary ion yields in time of flight-secondary ion mass spectrometry using water cluster primary beams. Anal. Chem. 85, 5654–5658 (2013)CrossRefGoogle Scholar
  13. 13.
    Sheraz, S.n.R., Razo, I.B., Kohn, T., Lockyer, N.P., Vickerman, J.C.: Enhancing ion yields in time-of-flight-secondary ion mass spectrometry: a comparative study of argon and water cluster ion beams. Anal. Chem. 87, 2367–2374 (2015)CrossRefGoogle Scholar
  14. 14.
    Angerer, T.B., Pour, M.D., Malmberg, P., Fletcher, J.S.: Improved molecular imaging in rodent brain with time-of-flight-secondary ion mass spectrometry using gas cluster ion beams and reactive vapor exposure. Anal. Chem. 87, 4305–4313 (2015)CrossRefGoogle Scholar
  15. 15.
    Tian, H., Wucher, A., Winograd, N.: Reduce the matrix effect in biological tissue imaging using dynamic reactive ionization and gas cluster ion beams. Biointerphases. 11, 02A3210-1–02A3210-5 (2016)CrossRefGoogle Scholar
  16. 16.
    Shard, A.G., Havelund, R., Spencer, S.J., Gilmore, I.S., Alexander, M.R., Angerer, T.B., Aoyagi, S., Barnes, J.-P., Benayad, A., Bernasik, A., Ceccone, G., Counsell, J.D.P., Deeks, C., Fletcher, J.S., Graham, D.J., Heuser, C., Lee, T.G., Marie, C., Marzec, M.M., Mishra, G., Rading, D., Renault, O., Scurr, D.J., Shon, H.K., Spampinato, V., Tian, H., Wang, F.Y., Winograd, N., Wu, K., Wucher, A., Zhou, Y.F., Zhu, Z.H.: Measuring compositions in organic depth profiling: results from a VAMAS interlaboratory study. J. Phys. Chem. B. 119, 10784–10797 (2015)Google Scholar
  17. 17.
    Havelund, R., Seah, M.P., Gilmore, I.S.: Sampling depths, depth shifts and depth resolutions for bin + ion analysis in argon gas cluster depth profiles. J. Phys. Chem. B. 120, 2604–2611 (2016)CrossRefGoogle Scholar
  18. 18.
    Seah, M.P., Gilmore, I.S., Spencer, S.J.: Quantitative XPS I: analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database. J. Electron Spectrosc. Relat. Phenom. 120, 93–111 (2001)Google Scholar
  19. 19.
  20. 20.
    ISO 18118:2015 – Surface chemical analysis Auger electron spectroscopy and X-ray photoelectron spectroscopy – guide to the use of experimentally determined sensitivity factors for the quantitative analysis of homogeneous materials. ISO Geneva (2015)Google Scholar
  21. 21.
    Seah, M.P.: A system for the intensity calibration of electron spectrometers. J. Electron Spectrosc. Relat. Phenom. 71, 191–204 (1995)Google Scholar
  22. 22.
  23. 23.
    Seah, M.P., Havelund, R., Shard, A.G., Gilmore, I.S.: Sputtering yields for mixtures of organic materials using argon gas cluster ions. J. Phys. Chem. B. 119(13), 433–13,439 (2015)Google Scholar
  24. 24.
    Eichelberger, B.R., Snow, T.P., Bierbaum, V.M.: Collision rate constants for polarizable ions. J. Am. Soc. Mass Spectrom. 14, 501–505 (2003)CrossRefGoogle Scholar
  25. 25.
    Nichols, C.M.: Gas-phase ion chemistry: kinetics and thermodynamics. Ph D Thesis, University of Central Arkansas (2009)Google Scholar
  26. 26.
    Su, T., Bowers, M.T.: Ion-polar molecule collisions: the effect of ion size on ion-polar molecule rate constants, the parameterization of the average-dipole-orientation theory. Int. J. Mass Spectrom. 12, 347–356 (1973)Google Scholar
  27. 27.
    Celli, F., Weddle, G., Ridge, D.P.: On statistical and thermodynamic approaches to ion-polar molecule collisions. J. Chem. Phys. 73, 801–812 (1980)CrossRefGoogle Scholar
  28. 28.
    Zhao, J., Zhang, R.: Proton transfer reaction rate constants between hydronium ion (H3O+) and volatile organic compounds. Atmos. Environ. 38, 2177–2185 (2004)CrossRefGoogle Scholar
  29. 29.
    Samartsev, A.V., Duvenbeck, A., Wucher, A.: Sputtering of indium using Aum projectiles: transition from linear cascade to spike regime. Phys. Rev. B. 72, 115,417 (10 pages (2005)CrossRefGoogle Scholar
  30. 30.
    Delcorte, A., Garrison, B.J.: Sputtering polymers with buckminsterfullerene projectiles: a coarse-grain molecular dynamics study. J. Phys. Chem. C. 111(15), 312–15,324 (2007)Google Scholar
  31. 31.
    Mazarov, P., Samartsev, A.V., Wucher, A.: Determination of energy dependent ionization probabilities of sputtered particles. Appl. Surf. Sci. 252, 6452–6455 (2006)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • M. P. Seah
    • 1
    Email author
  • R. Havelund
    • 1
  • S. J. Spencer
    • 1
  • I. S. Gilmore
    • 1
  1. 1.Analytical Science DivisionNational Physical LaboratoryTeddingtonUK

Personalised recommendations