Advertisement

Sputter-Coated Metal Screening for Small Molecule Analysis and High-Spatial Resolution Imaging in Laser Desorption Ionization Mass Spectrometry

  • Rebecca L. Hansen
  • Maria Emilia Dueñas
  • Young Jin LeeEmail author
Research Article

Abstract

Nanoparticles are efficient matrices in laser desorption/ionization (LDI) mass spectrometry (MS), especially for the profiling or imaging of small molecules. Recently, solvent-free physical vapor desorption (PVD), or sputter coating, was adopted as a homogenous method to rapidly apply metal nanoparticles (NPs) in situ to samples prior to LDI MS or MS imaging analysis. However, there has been no systematic study comparing different metal targets for the analysis of a variety of small molecule metabolites. Here, we present a screening and optimization of various sputter-coated metals, including Ag, Au, Cu, Pt, Ni, and Ti, for LDI analysis of small molecules in both positive and negative ion modes. Optimized sputter coating is then applied to high-spatial resolution LDI mass spectrometry imaging (MSI) of maize root and seed cross-sections. Noble metals, Ag, Au, and Pt, are found to be much more efficient than transition metals and organic matrices for most small metabolites. Sputter-coated metals are efficient for neutral lipids, such as triacylglycerols and diacylglycerols, but are very inefficient for most phospholipids.

Graphical Abstract

Keywords

Sputter coating Laser desorption ionization Mass spectrometry imaging Nanoparticles Noble metals Small molecule imaging 

Notes

Acknowledgements

This work was partially funded by the United States Department of Agriculture-National Institute of Food and Agriculture (USDA-NIFA).

Supplementary material

13361_2018_2081_MOESM1_ESM.pdf (2.3 mb)
ESM 1 (PDF 2319 kb)

References

  1. 1.
    Shrivas, K., Hayasaka, T., Sugiura, Y., Setou, M.: Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry. Anal. Chem. 83, 7283–7289 (2011)CrossRefGoogle Scholar
  2. 2.
    Lu, M., Yang, X., Yang, Y., Qin, P., Wu, X., Cai, Z.: Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nano. 7, 87 (2017)Google Scholar
  3. 3.
    Cha, S., Yeung, E.S.: Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal. Chem. 79, 2373–2385 (2007)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Liu, Q., Liang, Y., Jiang, G.: Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 408, 2861–2873 (2016)CrossRefGoogle Scholar
  5. 5.
    Yagnik, G.B., Hansen, R.L., Korte, A.R., Reichert, M.D., Vela, J., Lee, Y.J.: Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry. Anal. Chem. 88, 8926–8930 (2016)CrossRefGoogle Scholar
  6. 6.
    Zhu, Z.-J., Tang, R., Yeh, Y.-C., Miranda, O.R., Rotello, V.M., Vachet, R.W.: Determination of the intracellular stability of gold nanoparticle monolayers using mass spectrometry. Anal. Chem. 84, 4321–4326 (2012)CrossRefGoogle Scholar
  7. 7.
    Tang, J., Liu, Y., Qi, D., Yao, G., Deng, C., Zhang, X.: On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics. 9, 5046–5055 (2009)CrossRefGoogle Scholar
  8. 8.
    Liang, Q., Sherwood, J., Macher, T., Wilson, J.M., Bao, Y., Cassady, C.J.: Citric acid capped iron oxide nanoparticles as an effective MALDI matrix for polymers. J. Am. Soc. Mass Spectrom. 28, 409–418 (2017)CrossRefGoogle Scholar
  9. 9.
    Amendola, V., Litti, L., Meneghetti, M.: LDI-MS assisted by chemical-free gold nanoparticles: enhanced sensitivity and reduced background in the low-mass region. Anal. Chem. 85, 11747–11754 (2013)CrossRefGoogle Scholar
  10. 10.
    Taira, S., Sugiura, Y., Moritake, S., Shimma, S., Ichiyanagi, Y., Setou, M.: Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal. Chem. 80, 4761–4766 (2008)CrossRefGoogle Scholar
  11. 11.
    Liang, Q., Macher, T., Xu, Y., Bao, Y., Cassady, C.J.: MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal. Chem. 86, 8496–8503 (2014)CrossRefGoogle Scholar
  12. 12.
    Tang, H.-W., Wong, M.Y.-M., Lam, W., Cheng, Y.-C., Che, C.-M., Ng, K.-M.: Molecular histology analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry using gold nanoparticles as matrix. Rapid Commun. Mass Spectrom. 25, 3690–3696 (2011)CrossRefGoogle Scholar
  13. 13.
    Dufresne, M., Thomas, A., Breault-Turcot, J., Masson, J.-F., Chaurand, P.: Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal. Chem. 85, 3318–3324 (2013)CrossRefGoogle Scholar
  14. 14.
    Dufresne, M., Masson, J.-F., Chaurand, P.: Sodium-doped gold-assisted laser desorption ionization for enhanced imaging mass spectrometry of triacylglycerols from thin tissue sections. Anal. Chem. 88, 6018–6025 (2016)CrossRefGoogle Scholar
  15. 15.
    Xu, L., Kliman, M., Forsythe, J.G., Korade, Z., Hmelo, A.B., Porter, N.A., McLean, J.A.: Profiling and imaging ion mobility-mass spectrometry analysis of cholesterol and 7-dehydrocholesterol in cells via sputtered silver MALDI. J. Am. Soc. Mass Spectrom. 26, 924–933 (2015)CrossRefGoogle Scholar
  16. 16.
    Ozawa, T., Osaka, I., Ihozaki, T., Hamada, S., Kuroda, Y., Murakami, T., Miyazato, A., Kawasaki, H., Arakawa, R.: Simultaneous detection of phosphatidylcholines and glycerolipids using matrix-enhanced surface-assisted laser desorption/ionization-mass spectrometry with sputter-deposited platinum film. J. Mass Spectrom. 50, 1264–1269 (2015)CrossRefGoogle Scholar
  17. 17.
    Feenstra, A.D., Dueñas, M.E., Lee, Y.J.: Five micron high resolution MALDI mass spectrometry imaging with simple, interchangeable, multi-resolution optical system. J. Am. Soc. Mass Spectrom. 28, 434–442 (2017)CrossRefGoogle Scholar
  18. 18.
    Guijas, C., Montenegro-Burke, J.R., Domingo-Almenara, X., Palermo, A., Warth, B., Hermann, G., Koellensperger, G., Huan, T., Uritboonthai, W., Aisporna, A.E., Wolan, D.W., Spilker, M.E., Benton, H.P., Siuzdak, G.: METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018)CrossRefGoogle Scholar
  19. 19.
    Allen, F., Pon, A., Wilson, M., Greiner, R., Wishart, D.: CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 42, W94–W99 (2014)CrossRefGoogle Scholar
  20. 20.
    Li, J., Liu, J., Liu, Z., Tan, Y., Liu, X., Wang, F.: Water-soluble Au nanoclusters for multiplexed mass spectrometry imaging. Chem. Commun. 53, 12688–12691 (2017)CrossRefGoogle Scholar
  21. 21.
    Klein, A.T., Yagnik, G.B., Hohenstein, J.D., Ji, Z., Zi, J., Reichert, M.D., MacIntosh, G.C., Yang, B., Peters, R.J., Vela, J., Lee, Y.J.: Investigation of the chemical interface in the soybean–aphid and rice–bacteria interactions using MALDI-mass spectrometry imaging. Anal. Chem. 87, 5294–5301 (2015)CrossRefGoogle Scholar
  22. 22.
    Feenstra, A.D., Alexander, L.E., Song, Z., Korte, A.R., Yandeau-Nelson, M., Nikolau, B.J., Lee, Y.-J.: Spatial mapping and profiling of metabolite distributions during germination. Plant Physiol. 174, 2532–2548 (2017)CrossRefGoogle Scholar
  23. 23.
    Dueñas, M.E., Carlucci, L., Lee, Y.J.: Matrix recrystallization for MALDI-MS imaging of maize lipids at high-spatial resolution. J. Am. Soc. Mass Spectrom. 27, 1575–1578 (2016)CrossRefGoogle Scholar
  24. 24.
    Feenstra, A.D., O'Neill, K.C., Yagnik, G.B., Lee, Y.J.: Organic-inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides. RSC Adv. 6, 99260–99268 (2016)CrossRefGoogle Scholar
  25. 25.
    Lauzon, N., Dufresne, M., Chauhan, V., Chaurand, P.: Development of laser desorption imaging mass spectrometry methods to investigate the molecular composition of latent fingermarks. J. Am. Soc. Mass Spectrom. 26, 878–886 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations