Advertisement

Gas-Phase Ion/Ion Chemistry as a Probe for the Presence of Carboxylate Groups in Polypeptide Cations

  • Anthony M. Pitts-McCoy
  • Christopher P. Harrilal
  • Scott A. McLuckeyEmail author
Research Article

Abstract

The reactivity of 1-hydroxybenzoyl triazole (HOBt) esters with the carboxylate functionality present in peptides is demonstrated in the gas phase with a doubly deprotonated dianion. The reaction forms an anhydride linkage at the carboxylate site. Upon ion trap collisional-induced dissociation (CID) of the modified peptide, the resulting spectrum shows a nominal loss of the mass of the reagent and a water molecule. Analogous phenomenology was also noted for model peptide cations that likely contain zwitterionic/salt-bridged motifs in reactions with a negatively charged HOBt ester. Control experiments indicate that a carboxylate group is the likely reactive site, rather than other possible nucleophilic sites present in the peptide. These observations suggest that HOBt ester chemistry may be used as a chemical probe for the presence and location of carboxylate groups in net positively charged polypeptide ions. As an illustration, deprotonated sulfobenzoyl HOBt was reacted with the [M+7H]7+ ion of ubiquitin. The ion was shown to react with the reagent and CID of the covalent reaction product yielded an abundant [M+6H-H2O]6+ ion. Comparison of the CID product ion spectrum of this ion with that of the water loss product generated from CID of the unmodified [M+6H]6+ ion revealed the glutamic acid at residue 64 as a reactive site, suggesting that it is present in the deprotonated form.

Graphical Abstract

Keywords

Ion/ion reactions Zwitterion Protonated peptide Carboxylates Triazole ester 

Notes

Acknowledgments

This work was supported by the National Institutes of Health (NIH) under Grant GM R37-45372.

Supplementary material

13361_2018_2079_MOESM1_ESM.docx (796 kb)
ESM 1 (DOCX 785 kb)

References

  1. 1.
    Ding, Y., Krogh-Jespersen, K.: The glycine zwitterion does not exist in the gas phase: results from a detailed ab initio electronic structure study. Chem. Phys. Lett. 199, 261–266 (1992)CrossRefGoogle Scholar
  2. 2.
    Prell, J.S., O’Brien, J.T., Steill, J.D., Oomens, J., Williams, E.R.: Structures of protonated dipeptides: the role of arginine in stabilizing salt bridges. J. Am. Chem. Soc. 131, 11442–11449 (2009)CrossRefGoogle Scholar
  3. 3.
    Mertens, L.A., Marzluff, E.M.: Gas phase hydrogen/deuterium exchange of arginine and arginine dipeptides complexed with alkali metals. J. Phys. Chem. A. 115, 9180–9187 (2011)CrossRefGoogle Scholar
  4. 4.
    Hiserodt, R.D., Brown, S.M., Swijter, D.F.H., Hawkins, N., Mussinan, C.J.: A study of b1+H2O and b1-ions in the product ion spectra of dipeptides containing N-terminal basic amino acid residues. J. Am. Soc. Mass Spectrom. 18, 1414–1422 (2007)CrossRefGoogle Scholar
  5. 5.
    Popa, V., Trecroce, D.A., McAllister, R.G., Konermann, L.: Collision-induced dissociation of electrosprayed protein complexes: an all-atom molecular dynamics model with mobile protons. J. Phys. Chem. B. 120, 5114–5124 (2016)CrossRefGoogle Scholar
  6. 6.
    Jenner, M., Ellis, J., Huang, W.-C., Lloyd Raven, E., Roberts, G.C.K., Oldham, N.J.: Detection of a protein conformational equilibrium by electrospray ionisation-ion mobility-mass spectrometry. Angew. Chem. Int. Ed. 50, 8291–8294 (2011)CrossRefGoogle Scholar
  7. 7.
    Bonner, J., Lyon, Y.A., Nellessen, C., Julian, R.R.: Photoelectron transfer dissociation reveals surprising favorability of zwitterionic states in large gaseous peptides and proteins. J. Am. Chem. Soc. 139, 10286–10293 (2017)CrossRefGoogle Scholar
  8. 8.
    Kjeldsen, F., Silivra, O.A., Zubarev, R.A.: Zwitterionic states in gas-phase polypeptide ions revealed by 157-nm ultra-violet photodissociation. Chem. Eur. J. 12, 7920–7928 (2006)CrossRefGoogle Scholar
  9. 9.
    Jockusch, R.A., Price, W.D., Williams, E.R.: Structure of cationized arginine (Arg·M+, M = H, Li, Na, K, Rb, and Cs) in the gas phase: further evidence for zwitterionic arginine. J. Phys. Chem. A. 103, 9266–9274 (1999)CrossRefGoogle Scholar
  10. 10.
    Price, W.D., Jockusch, R.A., Williams, E.R.: Is arginine a zwitterion in the gas phase? J. Am. Chem. Soc. 119, 11988–11989 (1997)CrossRefGoogle Scholar
  11. 11.
    Ling, S., Yu, W., Huang, Z., Lin, Z., Harañczyk, M., Gutowski, M.: Gaseous arginine conformers and their unique intramolecular interactions. J. Phys. Chem. A. 110, 12282–12291 (2006)CrossRefGoogle Scholar
  12. 12.
    Marchese, R., Grandori, R., Carloni, P., Raugei, S.: On the Zwitterionic nature of gas-phase peptides and protein ions. PLoS Comput. Biol. 6, e1000775 (2010)CrossRefGoogle Scholar
  13. 13.
    Jaeqx, S., Oomens, J., Rijs, A.M.: Gas-phase salt bridge interactions between glutamic acid and arginine. Phys. Chem. Chem. Phys. 15, 16341–16352 (2013)CrossRefGoogle Scholar
  14. 14.
    Scarff, C.A., Thalassinos, K., Hilton, G.R., Scrivens, J.H.: Travelling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun. Mass Spectrom. 22, 3297–3304 (2008)CrossRefGoogle Scholar
  15. 15.
    Covey, T., Douglas, D.J.: Collision cross sections for protein ions. J. Am. Soc. Mass Spectrom. 4, 616–623 (1993)CrossRefGoogle Scholar
  16. 16.
    Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Naked protein conformations: cytochrome c in the gas phase. J. Am. Chem. Soc. 117, 10141–10142 (1995)CrossRefGoogle Scholar
  17. 17.
    Wyttenbach, T., Bowers, M.T.: Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility–mass spectrometry environment. J. Phys. Chem. B. 115, 12266–12275 (2011)CrossRefGoogle Scholar
  18. 18.
    Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T.: Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010)CrossRefGoogle Scholar
  19. 19.
    Silveira, J.A., Fort, K.L., Kim, D., Servage, K.A., Pierson, N.A., Clemmer, D.E., Russell, D.H.: From solution to the gas phase: stepwise dehydration and kinetic trapping of substance P reveals the origin of peptide conformations. J. Am. Chem. Soc. 135, 19147–19153 (2013)CrossRefGoogle Scholar
  20. 20.
    Pagel, K., Natan, E., Hall, Z., Fersht, A.R., Robinson, C.V.: Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew. Chem. Int. Ed. 52, 361–365 (2013)CrossRefGoogle Scholar
  21. 21.
    Skinner, O.S., McLafferty, F.W., Breuker, K.: How ubiquitin unfolds after transfer into the gas phase. J. Am. Soc. Mass Spectrom. 23, 1011–1014 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhang, Z., Browne, S.J., Vachet, R.W.: Exploring salt bridge structures of gas-phase protein ions using multiple stages of electron transfer and collision induced dissociation. J. Am. Soc. Mass Spectrom. 25, 604–613 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, Z., Vachet, R.W.: Gas-phase protein salt bridge stabilities from collisional activation and electron transfer dissociation. Int. J. Mass Spectrom. 420, 51–56 (2017)CrossRefGoogle Scholar
  24. 24.
    Mentinova, M., McLuckey, S.A.: Covalent modification of gaseous peptide ions with N-hydroxysuccinimide ester reagent ions. J. Am. Chem. Soc. 132, 18248–18257 (2010)CrossRefGoogle Scholar
  25. 25.
    McGee, W.M., Mentinova, M., McLuckey, S.A.: Gas-phase conjugation to arginine residues in polypeptide ions via N-hydroxysuccinimide ester-based reagent ions. J. Am. Chem. Soc. 134, 11412–11414 (2012)CrossRefGoogle Scholar
  26. 26.
    Peng, Z., McGee, W.M., Bu, J., Barefoot, N.Z., McLuckey, S.A.: Gas phase reactivity of carboxylates with N-hydroxysuccinimide esters. J. Am. Soc. Mass Spectrom. 26, 174–180 (2015)CrossRefGoogle Scholar
  27. 27.
    Bu, J., Peng, Z., Zhao, F., McLuckey, S.A.: Enhanced reactivity in nucleophilic acyl substitution ion/ion reactions using triazole-ester reagents. J. Am. Soc. Mass Spectrom. 28, 1254–1261 (2017)CrossRefGoogle Scholar
  28. 28.
    Mirzaei, H., Regnier, F.: Enhancing electrospray ionization efficiency of peptides by derivatization. Anal. Chem. 78, 4175–4183 (2006)CrossRefGoogle Scholar
  29. 29.
    Peng, Z., Pilo, A.L., Luongo, C.A., McLuckey, S.A.: Gas-phase amidation of carboxylic acids with Woodward’s reagent K ions. J. Am. Soc. Mass Spectrom. 26, 1686–1694 (2015)CrossRefGoogle Scholar
  30. 30.
    Niles, R., Witkowska, H.E., Allen, S., Hall, S.C., Fisher, S.J., Hardt, M.: Acid-catalyzed Oxygen-18 labeling of peptides. Anal. Chem. 81, 2804–2809 (2009)CrossRefGoogle Scholar
  31. 31.
    Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 512–526 (2002)CrossRefGoogle Scholar
  32. 32.
    Xia, Y., Chrisman, P.A., Erickson, D.E., Liu, J., Liang, X., Londry, F.A., Yang, M.J., McLuckey, S.A.: Implementation of ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer. Anal. Chem. 78, 4146–4154 (2006)CrossRefGoogle Scholar
  33. 33.
    Xia, Y., Liang, X., McLuckey, S.A.: Pulsed dual electrospray ionization for In/In reactions. J. Am. Soc. Mass Spectrom. 16, 1750–1756 (2005)CrossRefGoogle Scholar
  34. 34.
    Xia, Y., Wu, J., McLuckey, S.A., Londry, F.A., Hager, J.W.: Mutual storage mode ion/ion reactions in a hybrid linear ion trap. J. Am. Soc. Mass Spectrom. 16, 71–81 (2005)CrossRefGoogle Scholar
  35. 35.
    Louris, J.N., Cooks, R.G., Syka, J.E.P., Kelley, P.E., Stafford, G.C., Todd, J.F.J.: Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass-spectrometry. Anal. Chem. 59, 1677–1685 (1987)CrossRefGoogle Scholar
  36. 36.
    Londry, F.A., Hager, J.W.: Mass selective axial ion ejection from a linear quadrupole ion trap. J. Am. Soc. Mass Spectrom. 14, 1130–1147 (2003)CrossRefGoogle Scholar
  37. 37.
    Gilbert, J.D., Prentice, B.M., McLuckey, S.A.: Ion/ion reactions with “onium” reagents: an approach for the gas-phase transfer of organic cations to multiply-charged anions. J. Am. Soc. Mass Spectrom. 29, 818–825 (2015)CrossRefGoogle Scholar
  38. 38.
    Harrilal, Christopher. Investigating electronic and structural changes imposed by Zwitterionic pairing in model peptides systems using IR-UV double resonance spectroscopy. 66th ASMS Conference on Mass Spectrometry and Allied Topics, American Society for Mass Spectrometry. San Diego Convention Center, CA (2018)Google Scholar
  39. 39.
    McGee, W.M., McLuckey, S.A.: Gas phase dissociation behavior of acyl-arginine peptides. Int. J. Mass Spectrom. 354-355, 181–187 (2013)CrossRefGoogle Scholar
  40. 40.
    Deery, M.J., Summerfield, S.G., Buzy, A., Jennings, K.R.: A mechanism for the loss of 60 u from peptides containing an arginine residue at the C-terminus. J. Am. Soc. Mass Spectrom. 8, 253–261 (2009)CrossRefGoogle Scholar
  41. 41.
    Hao, G., Wang, D., Gu, J., Shen, Q., Gross, S.S., Wang, Y.: Neutral loss of isocyanic acid in peptide CID spectra: a novel diagnostic marker for mass spectrometric identification of protein citrullination. J. Am. Soc. Mass Spectrom. 20, 723–727 (2009)CrossRefGoogle Scholar
  42. 42.
    McGee, W.M., McLuckey, S.A.: The ornithine effect in peptide cation dissociation. J. Mass Spectrom. 48, 856–861 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations