Advertisement

Exposure of Solvent-Inaccessible Regions in the Amyloidogenic Protein Human SOD1 Determined by Hydroxyl Radical Footprinting

  • Yuewei Sheng
  • Joseph Capri
  • Alan Waring
  • Joan Selverstone Valentine
  • Julian WhiteleggeEmail author
Research Article

Abstract

Solvent-accessibility change plays a critical role in protein misfolding and aggregation, the culprit for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mass spectrometry-based hydroxyl radical (·OH) protein footprinting has evolved as a powerful and fast tool in elucidating protein solvent accessibility. In this work, we used fast photochemical oxidation of protein (FPOP) hydroxyl radical (·OH) footprinting to investigate solvent accessibility in human copper-zinc superoxide dismutase (SOD1), misfolded or aggregated forms of which underlie a portion of ALS cases. ·OH-mediated modifications to 56 residues were detected with locations largely as predicted based on X-ray crystallography data, while the interior of SOD1 β-barrel is hydrophobic and solvent-inaccessible and thus protected from modification. There were, however, two notable exceptions—two closely located residues inside the β-barrel, predicted to have minimal or no solvent accessibility, that were found modified by FPOP (Phe20 and Ile112). Molecular dynamics (MD) simulations were consistent with differential access of peroxide versus quencher to SOD1’s interior complicating surface accessibility considerations. Modification of these two residues could potentially be explained either by local motions of the β-barrel that increased peroxide/solvent accessibility to the interior or by oxidative events within the interior that might include long-distance radical transfer to buried sites. Overall, comparison of modification patterns for the metal-free apoprotein versus zinc-bound forms demonstrated that binding of zinc protected the electrostatic loop and organized the copper-binding site. Our study highlights SOD1 hydrophobic groups that may contribute to early events in aggregation and discusses caveats to surface accessibility conclusions.

Graphical Abstract

Keywords

SASA Amyloid MD simulation Protein misfolding 

Notes

Acknowledgements

This work was supported by NINDS grant P01-NS49134. We thank Dr. Melissa Sondej and Puneet Souda for their aid in mass spectrometry and Dr. Bon-Kyung Koo for her aid in protein expression and purification. The authors thank Prof. Michael Gross and his co-workers for introducing us to the practicalities of setting up FPOP.

Supplementary material

13361_2018_2075_MOESM1_ESM.pdf (2.3 mb)
ESM 1 (PDF 2388 kb)

References

  1. 1.
    Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)CrossRefGoogle Scholar
  2. 2.
    Luheshi, L.M., Crowther, D.C., Dobson, C.M.: Protein misfolding and disease: from the test tube to the organism. Curr. Opin. Chem. Biol. 12, 25–31 (2008)CrossRefGoogle Scholar
  3. 3.
    Tartaglia, G.G., Cavalli, A., Pellarin, R., Caflisch, A.: The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci. 13, 1939–1941 (2004)CrossRefGoogle Scholar
  4. 4.
    Linding, R., Schymkowitz, J., Rousseau, F., Diella, F., Serrano, L.: A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J. Mol. Biol. 342, 345–353 (2004)CrossRefGoogle Scholar
  5. 5.
    Tartaglia, G.G., Pawar, A.P., Campioni, S., Dobson, C.M., Chiti, F., Vendruscolo, M.: Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol. 380, 425–436 (2008)CrossRefGoogle Scholar
  6. 6.
    Goldschmidt, L., Teng, P.K., Riek, R., Eisenberg, D.: Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. U. S. A. 107, 3487–3492 (2010)CrossRefGoogle Scholar
  7. 7.
    Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B.: Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·Oh/·O–) in aqueous-solution. J. Phys. Chem. Ref. Data. 17, 513–886 (1988)CrossRefGoogle Scholar
  8. 8.
    Takamoto, K., Chance, M.R.: Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct. 35, 251–276 (2006)CrossRefGoogle Scholar
  9. 9.
    Xu, G.H., Chance, M.R.: Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev. 107, 3514–3543 (2007)CrossRefGoogle Scholar
  10. 10.
    Gau, B.C., Sharp, J.S., Rempel, D.L., Gross, M.L.: Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal. Chem. 81, 6563–6571 (2009)CrossRefGoogle Scholar
  11. 11.
    Hambly, D.M., Gross, M.L.: Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005)CrossRefGoogle Scholar
  12. 12.
    Chen, J., Rempel, D.L., Gross, M.L.: Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J. Am. Chem. Soc. 132, 15502–15504 (2010)CrossRefGoogle Scholar
  13. 13.
    Gau, B.C., Chen, J., Gross, M.L.: Fast photochemical oxidation of proteins for comparing solvent-accessibility changes accompanying protein folding: data processing and application to barstar. Biochim. Biophys. Acta. 1834, 1230–1238 (2013)CrossRefGoogle Scholar
  14. 14.
    Gupta, S., Chai, J., Cheng, J., D'Mello, R., Chance, M.R., Fu, D.: Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature. 512, 101–104 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhang, H., Gau, B.C., Jones, L.M., Vidavsky, I., Gross, M.L.: Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Anal. Chem. 83, 311–318 (2011)CrossRefGoogle Scholar
  16. 16.
    Yan, Y., Chen, G., Wei, H., Huang, R.Y., Mo, J., Rempel, D.L., Tymiak, A.A., Gross, M.L.: Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin. J. Am. Soc. Mass Spectrom. 25, 2084–2092 (2014)CrossRefGoogle Scholar
  17. 17.
    Jones, L.M., Sperry, J., Carroll, J., Gross, M.L.: Fast photochemical oxidation of proteins for epitope mapping. Anal. Chem. 83, 7657–7661 (2011)CrossRefGoogle Scholar
  18. 18.
    Xie, B., Sharp, J.S.: Hydroxyl radical dosimetry for high flux hydroxyl radical protein footprinting applications using a simple optical detection method. Anal. Chem. 87, 10719–10723 (2015)CrossRefGoogle Scholar
  19. 19.
    Xie, B., Sood, A., Woods, R.J., Sharp, J.S.: Quantitative protein topography measurements by high resolution hydroxyl radical protein footprinting enable accurate molecular model selection. Sci. Rep. 7, 4552 (2017)CrossRefGoogle Scholar
  20. 20.
    Niu, B., Zhang, H., Giblin, D., Rempel, D.L., Gross, M.L.: Dosimetry determines the initial OH radical concentration in fast photochemical oxidation of proteins (FPOP). J. Am. Soc. Mass Spectrom. 26, 843–846 (2015)Google Scholar
  21. 21.
    Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X., et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362, 59–62 (1993)CrossRefGoogle Scholar
  22. 22.
    Sheng, Y., Chattopadhyay, M., Whitelegge, J., Valentine, J.S.: SOD1 aggregation and ALS: role of metallation states and disulfide status. Curr. Top. Med. Chem. 12, 2560–2572 (2012)CrossRefGoogle Scholar
  23. 23.
    Sheng, Y., Abreu, I.A., Cabelli, D.E., Maroney, M.J., Miller, A.F., Teixeira, M., Valentine, J.S.: Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854–3918 (2014)CrossRefGoogle Scholar
  24. 24.
    Shaw, B.F., Durazo, A., Nersissian, A.M., Whitelegge, J.P., Faull, K.F., Valentine, J.S.: Local unfolding in a destabilized, pathogenic variant of superoxide dismutase 1 observed with H/D exchange and mass spectrometry. J. Biol. Chem. 281, 18167–18176 (2006)CrossRefGoogle Scholar
  25. 25.
    Durazo, A., Shaw, B.F., Chattopadhyay, M., Faull, K.F., Nersissian, A.M., Valentine, J.S., Whitelegge, J.P.: Metal-free superoxide dismutase-1 and three different amyotrophic lateral sclerosis variants share a similar partially unfolded beta-barrel at physiological temperature. J. Biol. Chem. 284, 34382–34389 (2009)CrossRefGoogle Scholar
  26. 26.
    Chan, P.K., Chattopadhyay, M., Sharma, S., Souda, P., Gralla, E.B., Borchelt, D.R., Whitelegge, J.P., Valentine, J.S.: Structural similarity of wild-type and ALS-mutant superoxide dismutase-1 fibrils using limited proteolysis and atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A. 110, 10934–10939 (2013)CrossRefGoogle Scholar
  27. 27.
    Potter, S.Z., Zhu, H., Shaw, B.F., Rodriguez, J.A., Doucette, P.A., Sohn, S.H., Durazo, A., Faull, K.F., Gralla, E.B., Nersissian, A.M., Valentine, J.S.: Binding of a single zinc ion to one subunit of copper-zinc superoxide dismutase apoprotein substantially influences the structure and stability of the entire homodimeric protein. J. Am. Chem. Soc. 129, 4575–4583 (2007)CrossRefGoogle Scholar
  28. 28.
    Konermann, L., Stocks, B.B., Czarny, T.: Laminar flow effects during laser-induced oxidative labeling for protein structural studies by mass spectrometry. Anal. Chem. 82, 6667–6674 (2010)CrossRefGoogle Scholar
  29. 29.
    Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A.J.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009)CrossRefGoogle Scholar
  30. 30.
    Capri, J., Whitelegge, J.P.: Full membrane protein coverage digestion and quantitative bottom-up mass spectrometry proteomics. Methods Mol. Biol. 1550, 61–67 (2017)CrossRefGoogle Scholar
  31. 31.
    Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 29, 845–854 (2013)CrossRefGoogle Scholar
  32. 32.
    Hsu, J.L., Chen, S.H.: Stable isotope dimethyl labelling for quantitative proteomics and beyond. Philos. Trans. A Math Phys. Eng. Sci. 374 (2016).  https://doi.org/10.1098/rsta.2015.0364
  33. 33.
    Wang, X., Watson, C., Sharp, J.S., Handel, T.M., Prestegard, J.H.: Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and SAXS data. Structure. 19, 1138–1148 (2011)CrossRefGoogle Scholar
  34. 34.
    Banci, L., Bertini, I., Boca, M., Calderone, V., Cantini, F., Girotto, S., Vieru, M.: Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Proc. Natl. Acad. Sci. U. S. A. 106, 6980–6985 (2009)CrossRefGoogle Scholar
  35. 35.
    Strange, R.W., Antonyuk, S., Hough, M.A., Doucette, P.A., Rodriguez, J.A., Hart, P.J., Hayward, L.J., Valentine, J.S., Hasnain, S.S.: The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J Mol. Biol. 328, 877–891 (2003)CrossRefGoogle Scholar
  36. 36.
    Banci, L., Bertini, I., Cramaro, F., Del Conte, R., Viezzoli, M.S.: Solution structure of Apo Cu, Zn superoxide dismutase: role of metal ions in protein folding. Biochemistry. 42, 9543–9553 (2003)CrossRefGoogle Scholar
  37. 37.
    Taylor, D.M., Gibbs, B.F., Kabashi, E., Minotti, S., Durham, H.D., Agar, J.N.: Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 282, 16329–16335 (2007)CrossRefGoogle Scholar
  38. 38.
    Karunakaran, C., Zhang, H., Crow, J.P., Antholine, W.E., Kalyanaraman, B.: Direct probing of copper active site and free radical formed during bicarbonate-dependent peroxidase activity of bovine and human copper, zinc-superoxide dismutases. Low-temperature electron paramagnetic resonance and electron nuclear double resonance studies. J. Biol. Chem. 279, 32534–32540 (2004)CrossRefGoogle Scholar
  39. 39.
    Zhang, H., Andrekopoulos, C., Joseph, J., Chandran, K., Karoui, H., Crow, J.P., Kalyanaraman, B.: Bicarbonate-dependent peroxidase activity of human Cu, Zn-superoxide dismutase induces covalent aggregation of protein: intermediacy of tryptophan-derived oxidation products. J. Biol. Chem. 278, 24078–24089 (2003)CrossRefGoogle Scholar
  40. 40.
    Burkitt, M.J., Mason, R.P.: Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Proc. Natl. Acad. Sci. U. S. A. 88, 8440–8444 (1991)CrossRefGoogle Scholar
  41. 41.
    Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A.: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U. S. A. 87, 1620–1624 (1990)CrossRefGoogle Scholar
  42. 42.
    Shaw, B.F., Lelie, H.L., Durazo, A., Nersissian, A.M., Xu, G., Chan, P.K., Gralla, E.B., Tiwari, A., Hayward, L.J., Borchelt, D.R., Valentine, J.S., Whitelegge, J.P.: Detergent-insoluble aggregates associated with amyotrophic lateral sclerosis in transgenic mice contain primarily full-length, unmodified superoxide dismutase-1. J. Biol. Chem. 283, 8340–8350 (2008)CrossRefGoogle Scholar
  43. 43.
    Huang, W., Ravikumar, K.M., Chance, M.R., Yang, S.: Quantitative mapping of protein structure by hydroxyl radical footprinting-mediated structural mass spectrometry: a protection factor analysis. Biophys. J. 108, 107–115 (2015)CrossRefGoogle Scholar
  44. 44.
    Banci, L., Bertini, I., Cantini, F., D'Onofrio, M., Viezzoli, M.S.: Structure and dynamics of copper-free SOD: the protein before binding copper. Protein Sci. 11, 2479–2492 (2002)CrossRefGoogle Scholar
  45. 45.
    Wang, L., Chance, M.R.: Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal. Chem. 83, 7234–7241 (2011)CrossRefGoogle Scholar
  46. 46.
    Winkler, J.R., Gray, H.B.: Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930–2939 (2014)CrossRefGoogle Scholar
  47. 47.
    Winkler, J.R., Gray, H.B.: Electron flow through metalloproteins. Chem. Rev. 114, 3369–3380 (2014)CrossRefGoogle Scholar
  48. 48.
    Gray, H.B., Winkler, J.R.: Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc. Natl. Acad. Sci. U. S. A. 112, 10920–10925 (2015)CrossRefGoogle Scholar
  49. 49.
    Kubelka, J., Hofrichter, J., Eaton, W.A.: The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 14, 76–88 (2004)CrossRefGoogle Scholar
  50. 50.
    Lassmann, G., Eriksson, L.A., Lendzian, F., Lubitz, W.: Structure of a transient neutral histidine radical in solution: EPR continuous-flow studies in a Ti3+/EDTA-Fenton system and density functional calculations. J. Phys. Chem. A. 104, 9144–9152 (2000)CrossRefGoogle Scholar
  51. 51.
    Vahidi, S., Konermann, L.: Probing the time scale of FPOP (fast photochemical oxidation of proteins): radical reactions extend over tens of milliseconds. J. Am. Soc. Mass Spectrom. 27, 1156–1164 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  2. 2.The Pasarow Mass Spectrometry LaboratoryUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of MedicineUniversity of CaliforniaLos AngelesUSA
  4. 4.The Brain Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations