Advertisement

Conditions for Analysis of Native Protein Structures Using Uniform Field Drift Tube Ion Mobility Mass Spectrometry and Characterization of Stable Calibrants for TWIM-MS

  • Julian A. Harrison
  • Celine Kelso
  • Tara L. Pukala
  • Jennifer L. BeckEmail author
Research Article

Abstract

Determination of collisional cross sections (CCS) by travelling wave ion mobility mass spectrometry (TWIM-MS) requires calibration against standards for which the CCS has been measured previously by drift tube ion mobility mass spectrometry (DTIM-MS). The different extents of collisional activation in TWIM-MS and DTIM-MS can give rise to discrepancies in the CCS of calibrants across the two platforms. Furthermore, the conditions required to ionize and transmit large, folded proteins and assemblies may variably affect the structure of the calibrants and analytes. Stable hetero-oligomeric phospholipase A2 (PDx) and its subunits were characterized as calibrants for TWIM-MS. Conditions for acquisition of native-like TWIM (Synapt G1 HDMS) and DTIM (Agilent 6560 IM-Q-TOF) mass spectra were optimized to ensure the spectra exhibited similar charge state distributions. CCS measurements (DTIM-MS) for ubiquitin, cytochrome c, holo-myoglobin, serum albumin and glutamate dehydrogenase were in good agreement with other recent results determined using this and other DTIM-MS instruments. PDx and its β and γ subunits were stable across a wide range of cone and trap voltages in TWIM-MS and were stable in the presence of organic solvents. The CCS of PDx and its subunits were determined by DTIM-MS and were used as calibrants in determination of CCS of native-like cytochrome c, holo-myoglobin, carbonic anhydrase, serum albumin and haemoglobin in TWIM-MS. The CCS values were in good agreement with those measured by DTIM-MS where available. These experiments demonstrate conditions for analysis of native-like proteins using a commercially available DTIM-MS instrument, characterize robust calibrants for TWIM-MS, and present CCS values determined by DTIM-MS and TWIM-MS for native proteins to add to the current literature database.

Graphical Abstract

Keywords

Native mass spectrometry Drift tube ion mobility mass spectrometry Travelling wave ion mobility mass spectrometry 

Abbreviations

DTIM-MS

Drift tube ion mobility mass spectrometry

ESI

Electrospray ionization

ESI-MS

Electrospray ionization mass spectrometry

GDH

Glutamate dehydrogenase

HSA

Human serum albumin

IMMS

Ion mobility mass spectrometry

PDx

Phospholipase A2/paradoxin from Oxyuranus microlepidotus

TWIM-MS

Travelling wave ion mobility mass spectrometry

Notes

Acknowledgements

The Waters Synapt G1 HDMS mass spectrometer (University of Wollongong, UOW) used in this work was funded by the Australian Research Council (LE0882289). The Agilent 6560 IM-Q-TOF mass spectrometer (University of Adelaide) was accessed through a collaborative partnership with Agilent Technologies. The work was also supported by Molecular Horizons (UOW).

Supplementary material

13361_2018_2074_MOESM1_ESM.docx (3.3 mb)
ESM 1 (DOCX 3.25 mb)
13361_2018_2074_MOESM2_ESM.docx (4.3 mb)
ESM 1 (DOCX 4.26 mb)
13361_2018_2074_MOESM3_ESM.docx (5.4 mb)
ESM 1 (DOCX 5.38 mb)
13361_2018_2074_MOESM4_ESM.docx (5.2 mb)
ESM 1 (DOCX 5.23 mb)
13361_2018_2074_MOESM5_ESM.docx (4.1 mb)
ESM 1 (DOCX 4.14 mb)
13361_2018_2074_MOESM6_ESM.docx (4.2 mb)
ESM 1 (DOCX 4.17 mb)
13361_2018_2074_MOESM7_ESM.docx (2.2 mb)
ESM 1 (DOCX 2.18 mb)

References

  1. 1.
    Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)CrossRefGoogle Scholar
  2. 2.
    Smith, D.P., Giles, K., Bateman, R.H., Radford, S.E., Ashcroft, A.E.: Monitoring copopulated conformational states during protein folding events using electrospray ionization ion mobility spectrometry mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 2180–2190 (2007)CrossRefGoogle Scholar
  3. 3.
    Porter, K.C., Beck, J.L.: Assessment of the gas phase stability of quadruplex DNA using travelling wave ion mobility mass spectrometry. Int. J. Mass Spectrom. 304, 195–203 (2011)CrossRefGoogle Scholar
  4. 4.
    Eschweiler, J.D., Frank, A.T., Ruotolo, B.T.: Coming to grips with ambiguity: ion mobility mass spectrometry for protein quaternary structure assignment. J. Am. Soc. Mass Spectrom. 28, 1991–2000 (2017)CrossRefGoogle Scholar
  5. 5.
    Wyttenbach, T., Kemper, P.R., Bowers, M.T.: Design of a new electrospray ion mobility mass spectrometer. Int. J. Mass Spectrom. 212, 13–23 (2001)CrossRefGoogle Scholar
  6. 6.
    Harvey, S.R., MacPhee, C.E., Barran, P.E.: Ion mobility mass spectrometry for peptide analysis. Methods. 54, 454–461 (2011)CrossRefGoogle Scholar
  7. 7.
    Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294 (2014)CrossRefGoogle Scholar
  8. 8.
    Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a travelling wave-based radio-frequencyonly stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004)CrossRefGoogle Scholar
  9. 9.
    Wildgoose, J., McKenna, T., Hughes, C., Giles, K., Pringle, S., Campuzano, I., Langridge, J., Bateman, R.H.: Using a novel travelling wave ion mobility device coupled with a time-of-flight mass spectrometer for the analysis of intact proteins. Mol. Cell. Proteomics. 5, S14–S14 (2006)CrossRefGoogle Scholar
  10. 10.
    Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H.: Ion mobility mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)CrossRefGoogle Scholar
  11. 11.
    Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T.: Collision cross sections of proteins and their complexes: a calibration framework and database for gas phase structural biology. Anal. Chem. 82, 9557–9565 (2010)CrossRefGoogle Scholar
  12. 12.
    Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 298, 119–127 (2010)CrossRefGoogle Scholar
  13. 13.
    Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Naked protein conformations—cytochrome c in the gas phase. J. Am. Chem. Soc. 117, 10141–10142 (1995)CrossRefGoogle Scholar
  14. 14.
    Shelimov, K.B., Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Protein structure in vacuo: gas phase conformations of BPTI and cytochrome c. J. Am. Chem. Soc. 119, 2240–2248 (1997)CrossRefGoogle Scholar
  15. 15.
    Shelimov, K.B., Jarrold, M.F.: Conformations, unfolding, and refolding of apomyoglobin in vacuum: an activation barrier for gas-phase protein folding. J. Am. Chem. Soc. 119, 2987–2994 (1997)CrossRefGoogle Scholar
  16. 16.
    Stow, S.M., Causon, T.J., Zheng, X.Y., Kurulugama, R.T., Mairinger, T., May, J.C., Rennie, E.E., Baker, E.S., Smith, R.D., McLean, J.A., Hann, S., Fjeldsted, J.C.: An interlaboratory evaluation of drift tube ion mobility mass spectrometry collision cross section measurements. Anal. Chem. 89, 9048–9055 (2017)CrossRefGoogle Scholar
  17. 17.
    Smith, D.P., Knapman, T.W., Campuzano, I., Malham, R.W., Berryman, J.T., Radford, S.E., Ashcroft, A.E.: Deciphering drift time measurements from travelling wave ion mobility spectrometry mass spectrometry studies. Eur. J. Mass Spectrom. 15, 113–130 (2009)CrossRefGoogle Scholar
  18. 18.
    May, J.C., Goodwin, C.R., Lareau, N.M., Leaptrot, K.L., Morris, C.B., Kurulugama, R.T., Mordehai, A., Klein, C., Barry, W., Darland, E., Overney, G., Imatani, K., Stafford, G.C., Fjeldsted, J.C., McLean, J.A.: Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility mass spectrometer. Anal. Chem. 86, 2107–2116 (2014)CrossRefGoogle Scholar
  19. 19.
    Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)CrossRefGoogle Scholar
  20. 20.
    Leary, J.A., Schenauer, M.R., Stefanescu, R., Andaya, A., Ruotolo, B.T., Robinson, C.V., Thalassinos, K., Scrivens, J.H., Sokabe, M., Hershey, J.W.B.: Methodology for measuring conformation of solvent-disrupted protein subunits using T-WAVE ion mobility MS: an investigation into eukaryotic initiation factors. J. Am. Soc. Mass Spectrom. 20, 1699–1706 (2009)CrossRefGoogle Scholar
  21. 21.
    Jurneczko, E., Kalapothakis, J., Campuzano, I.D.G., Morris, M., Barran, P.E.: Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 84, 8524–8531 (2012)CrossRefGoogle Scholar
  22. 22.
    Salbo, R., Bush, M.F., Naver, H., Campuzano, I., Robinson, C.V., Pettersson, I., Jorgensen, T.J.D., Haselmann, K.F.: Traveling wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. Rapid Commun. Mass Spectrom. 26, 1181–1193 (2012)CrossRefGoogle Scholar
  23. 23.
    Allison, T.M., Landreh, M., Benesch, J.L.P., Robinson, C.V.: Low charge and reduced mobility of membrane protein complexes has implications for calibration of collision cross section measurements. Anal. Chem. 88, 5879–5884 (2016)CrossRefGoogle Scholar
  24. 24.
    Sun, Y., Vahidi, S., Sowole, M.A., Konermann, L.: Protein structural studies by traveling wave ion mobility spectrometry: a critical look at electrospray sources and calibration issues. J. Am. Soc. Mass Spectrom. 27, 31–40 (2016)CrossRefGoogle Scholar
  25. 25.
    Morsa, D., Gabelica, V., De Pauw, E.: Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1384–1393 (2014)CrossRefGoogle Scholar
  26. 26.
    Hines, K.M., May, J.C., McLean, J.A., Xu, L.B.: Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility mass spectrometry. Anal. Chem. 88, 7329–7336 (2016)CrossRefGoogle Scholar
  27. 27.
    Kang, T.S., Georgieva, D., Genov, N., Murakami, M.T., Sinha, M., Kumar, R.P., Kaur, P., Kumar, S., Dey, S., Sharma, S., Vrielink, A., Betzel, C., Takeda, S., Arni, R.K., Singh, T.P., Kini, R.M.: Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 278, 4544–4576 (2011)CrossRefGoogle Scholar
  28. 28.
    Singh, R.R., Chang, J.Y.: Investigating conformational stability of bovine pancreatic phospholipase A(2): a novel concept in evaluating the contribution of the ‘native framework’ of disulphides to the global conformational stability of proteins. Biochem. J. 377, 685–692 (2004)CrossRefGoogle Scholar
  29. 29.
    Burke, J.E., Dennis, E.A.: Phospholipase A(2) structure/function, mechanism, and signaling. J. Lipid Res. 50, S237–S242 (2009)CrossRefGoogle Scholar
  30. 30.
    Harrison, J.A., Aquilina, J.A.: Insights into the subunit arrangement and diversity of paradoxin and taipoxin. Toxicon. 112, 45–50 (2016)CrossRefGoogle Scholar
  31. 31.
    Skejic, J., Hodgson, W.C.: Population divergence in venom bioactivities of elapid snake Pseudonaja textilis: role of procoagulant proteins in rapid rodent prey incapacitation. PLoS One. 8, e63988 (2013)CrossRefGoogle Scholar
  32. 32.
    Kurulugama, R.T., Darland, E., Kuhlmann, F., Stafford, G., Fjeldsted, J.: Evaluation of drift gas selection in complex sample analyses using a high performance drift tube ion mobility-QTOF mass spectrometer. Analyst. 14, 6834–6844 (2015)CrossRefGoogle Scholar
  33. 33.
    Marty, M.T., Baldwin, A.J., Marklund, E.G., Hochberg, G.K., Benesch, J.L., Robinson, C.V.: Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015)CrossRefGoogle Scholar
  34. 34.
    Eschweiler, J.D., Rabuck-Gibbons, J.N., Tian, Y.W., Ruotolo, B.T.: CIUSuite: a quantitative analysis package for collision induced unfolding measurements of gas phase protein ions. Anal. Chem. 87, 11516–11522 (2015)CrossRefGoogle Scholar
  35. 35.
    Porrini, M., Rosu, F., Rabin, C., Darre, L., Gomez, H., Orozco, M., Gabelica, V.: Compaction of duplex nucleic acids upon native electrospray mass spectrometry. ACS Central Science. 3, 454–461 (2017)CrossRefGoogle Scholar
  36. 36.
    Gabelica, V., Livet, S., Rosu, F.: Optimising native ion mobility Q-TOF in helium and nitrogen for very fragile noncovalent structures. J. Am. Soc. Mass Spectrom. (2018).  https://doi.org/10.1007/s13361-018-2029-4
  37. 37.
    May, J.C., Jurneczko, E., Stow, S.M., Kratochvil, I., Kalkhof, S., McLean, J.A.: Conformational landscapes of ubiquitin, cytochrome c, and myoglobin: uniform field ion mobility measurements in helium and nitrogen drift gas. Int. J. Mass Spectrom. 427, 79–90 (2018)CrossRefGoogle Scholar
  38. 38.
    Susa, A.C., Xia, Z.J., Tang, H.Y.H., Tainer, J.A., Williams, E.R.: Charging of proteins in native mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 332–340 (2017)CrossRefGoogle Scholar
  39. 39.
    Muralidharan, M., Das, R., Bhat, V., Mandal, A.K.: Analysis of the quaternary structure of hemoglobin Beckman variant and molecular interpretation of its functional abnormality: a mass spectrometry-based approach. Chembiochem. 19, 633–640 (2018)CrossRefGoogle Scholar
  40. 40.
    Ma, X., Zhou, M.W., Wysocki, V.H.: Surface-induced dissociation yields quaternary substructure of refractory noncovalent phosphorylase B and glutamate dehydrogenase complexes. J. Am. Soc. Mass Spectrom. 25, 368–379 (2014)CrossRefGoogle Scholar
  41. 41.
    Marchand, A., Livet, S., Rosu, F., Gabelica, V.: Drift tube ion mobility: how to reconstruct collision cross section distributions from arrival time distributions? Anal. Chem. 89, 12674–12681 (2017)CrossRefGoogle Scholar
  42. 42.
    Casewell, N.R., Huttley, G.A., Wuester, W.: Dynamic evolution of venom proteins in squamate reptiles. Nat. Commun. 3, (2012)Google Scholar
  43. 43.
    Samulak, B.M., Niu, S., Andrews, P.C., Ruotolo, B.T.: Ion mobility-mass spectrometry analysis of cross-linked intact multiprotein complexes: enhanced gas phase stabilities and altered dissociation pathways. Anal. Chem. 88, 5290–5298 (2016)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of WollongongWollongongAustralia
  2. 2.Molecular HorizonsUniversity of WollongongWollongongAustralia
  3. 3.Discipline of ChemistryUniversity of AdelaideAdelaideAustralia

Personalised recommendations