Disambiguation of Isomeric Procyanidins with Cyclic B-Type and Non-cyclic A-Type Structures from Wine and Peanut Skin with HPLC-HDX-HRMS/MS

  • Edoardo Longo
  • Fabrizio Rossetti
  • Vakare Merkyte
  • Emanuele BoselliEmail author
Research Article


Hydrogen/deuterium exchange coupled with high-resolution mass spectrometry was successfully applied for the identification of A-type tetrameric, pentameric, and hexameric procyanidins in peanut skin. This extended a previous study on isomeric cyclic B-type unconventional tetramer, pentamer, and hexamer procyanidins found in wine and cranberries. Not only had the method successfully identified the procyanidins with a single A-linkage (e.g., tetrameric m/z 1153.2608) by means of distinguishing them from their isomeric cyclic B-type analogues, but this method also worked for procyanidins with two or more A-linkages (such as the tetrameric m/z 1151.2452). As a further consequence, B-type cyclic pentamers and hexamers in wine have been elucidated with hydrogen/deuterium exchange (HDX) for the first time.

Graphical Abstract


Isotopic exchange Cyclic procyanidins Wine Peanut skin A-type procyanidins 



The authors wish to thank Kellerei Bozen (Gries, Bolzano, Italy) for providing the samples of Lagrein wine used for the analysis.

Funding Information

The authors thank the Province of Bolzano (Italy) (Beschluss No. 1472, 07.10.2013) for their financial support.

Supplementary material

13361_2018_2044_MOESM1_ESM.docx (83 kb)
ESM 1 (DOCX 82 kb)


  1. 1.
    Vivas de Gaulejac, N., Vivas, N., Absalon, C., Nonier, M.F.: Identification of Procyanidin A2 in grape and wine of Vitis vinifera LCV. Merlot Noir and Cabernet Sauvignon. J Int des Sci de la Vigne et du Vin. 35, 51–56 (2001)Google Scholar
  2. 2.
    Yu, J., Ahmedna, M., Goktepe, I., Dai, J.: Peanut skin procyanidins: composition and antioxidant activities as affected by processing. J. Food Compos. Anal. 19, 364–371 (2006)CrossRefGoogle Scholar
  3. 3.
    Guyot, S., Doco, T., Souquet, J.M., Moutounet, M., Drilleau, J.F.: Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. Kermerrien) skin and pulp. Phytochemistry. 44, 351–357 (1997)CrossRefGoogle Scholar
  4. 4.
    Hollands, W.J., Voorspoels, S., Jacobs, G., Aaby, K., Meisland, A., Garcia-Villalba, R., Tomas-Barberan, F., Piskula, M.K., Mawson, D., Vovk, I., Needs, P.W., Kroon, P.A.: Development, validation and evaluation of an analytical method for the determination of monomeric and oligomeric procyanidins in apple extracts. J. Chromatogr. A. 1495, 46–56 (2017)CrossRefGoogle Scholar
  5. 5.
    Robbins, R.J., Leonczak, J., Johnson, J.C., Li, J., Kwik-Uribe, C., Prior, R.L., Gu, L.: Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples. J. Chromatogr. A. 1216, 4831–4840 (2009)CrossRefGoogle Scholar
  6. 6.
    Prior, R.L., Lazarus, S.A., Cao, G., Muccitelli, H., Hammerstone, J.F.: Identification of procyanidins and anthocyanidins in blueberries and cranberries (Vaccinium spp.) using high performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 49, 1270–1276 (2001)CrossRefGoogle Scholar
  7. 7.
    Falleh, H., Oueslati, S., Guyot, S., Ben, A., Magné, C., Abdelly, C., Ksouri, R.: LC / ESI-MS / MS characterisation of procyanidins and propelargonidins responsible for the strong antioxidant activity of the edible halophyte Mesembryanthemum edule L. Food Chem. 127, 1732–1738 (2011)CrossRefGoogle Scholar
  8. 8.
    Sui, Y., Li, X., Li, S., Xie, B., Sun, Z.: Characterization and preparation of oligomeric procyanidins from Litchi chinensis pericarp. Fitoterapia. 112, 168–174 (2016)CrossRefGoogle Scholar
  9. 9.
    Ayoub, M., de Camargo, A.C., Shahidi, F.: Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem. 197, 221–232 (2015)CrossRefGoogle Scholar
  10. 10.
    Mulero, J., Pardo, F., Zafrilla, P.: Effect of principal polyphenolic components in relation to antioxidant activity in conventional and organic red wines during storage. Eur. Food Res. Technol. 229, 807–812 (2009)CrossRefGoogle Scholar
  11. 11.
    Shahidi, F., Ambigaipalan, P.: Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - a review. J. Funct. Foods. 18, 820–897 (2015)CrossRefGoogle Scholar
  12. 12.
    (2011) Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), mainte. EFSA J 9:2033. doi:
  13. 13.
    Ceymann, M., Arrigoni, E., Schärer, H., Bozzi Nising, A., Hurrell, R.F.: Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. J. Food Compos. Anal. 26, 128–135 (2012)CrossRefGoogle Scholar
  14. 14.
    Jourdes M, Zeng L, Pons-Marcadé P, Rivero Canosa M, Richard T, Teissèdre P-L (2016) A new procyanidin tetramer with unusual macrocyclic skeleton from grape and wine. 39’ World Vine Wine Congr. - Theme 2 Oenology, p. 432-433, 24-28 October, Bento Gonçalves, BrazilGoogle Scholar
  15. 15.
    Jouin A, Rossetti F, Teissèdre P-L, Jourdes M (2017) Evaluation of crown procyanidins contents in different variety and their accumulation kinetic during grape maturation. 10th Vino Anal. Sci. Symp. 17-20 July, p. 160, Salamanca, SpainGoogle Scholar
  16. 16.
    Longo, E., Rossetti, F., Scampicchio, M., Boselli, E.: Isotopic exchange HPLC-HRMS/MS applied to cyclic proanthocyanidins in wine and cranberries. J. Am. Soc. Mass Spectrom. 29, 663–674 (2018)CrossRefGoogle Scholar
  17. 17.
    Longo E, Rossetti F, Merkyte V, Obiedzinska A, Boselli E (2018) Selective binding of potassium and calcium ions to novel cyclic proanthocyanidins in wine by HPLC-HRMS. Rapid Commun Mass Spec. in press doi: CrossRefGoogle Scholar
  18. 18.
    Jeffery, D.W., Mercurio, M.D., Herderich, M.J., Hayasaka, Y., Smith, P.A.: Rapid isolation of red wine polymeric polyphenols by solid-phase extraction. J. Agric. Food Chem. 56, 2571–2580 (2008)CrossRefGoogle Scholar
  19. 19.
    Keller, B.O., Sui, J., Young, A.B., Whittal, R.M.: Interferents and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta. 627, 71–81 (2008)CrossRefGoogle Scholar
  20. 20.
    Gu, L., Kelm, M.A., Hammerstone, J.F., Beecher, G., Holden, J., Haytowitz, D., Prior, R.L.: Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J. Agric. Food Chem. 51, 7513–7521 (2003)CrossRefGoogle Scholar
  21. 21.
    Li, S., Xiao, J., Chen, L., Hu, C., Chen, P., Xie, B., Sun, Z.: Identification of A-series oligomeric procyanidins from pericarp of Litchi chinensis by FT-ICR-MS and LC-MS. Food Chem. 135, 31–38 (2012)CrossRefGoogle Scholar
  22. 22.
    Niemeyer, E.D., Brodbelt, J.S.: Isomeric differentiation of green tea catechins using gas-phase hydrogen/deuterium exchange reactions. J. Am. Soc. Mass Spectrom. 18, 1749–1759 (2007)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Faculty of Science and TechnologyFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Department of Agricultural, Food and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations