Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1908–1918 | Cite as

Gas Chromatography-Tandem Mass Spectrometry of Lignin Pyrolyzates with Dopant-Assisted Atmospheric Pressure Chemical Ionization and Molecular Structure Search with CSI:FingerID

  • Evan A. Larson
  • Carolyn P. Hutchinson
  • Young Jin Lee
Research Article

Abstract

Dopant-assisted atmospheric pressure chemical ionization (dAPCI) is a soft ionization method rarely used for gas chromatography-mass spectrometry (GC-MS). The current study combines GC-dAPCI with tandem mass spectrometry (MS/MS) for analysis of a complex mixture such as lignin pyrolysis analysis. To identify the structures of volatile lignin pyrolysis products, collision-induced dissociation (CID) MS/MS using a quadrupole time-of-flight mass spectrometer (QTOFMS) and pseudo MS/MS through in-source collision-induced dissociation (ISCID) using a single stage TOFMS are utilized. To overcome the lack of MS/MS database, Compound Structure Identification (CSI):FingerID is used to interpret CID spectra and predict best matched structures from PubChem library. With this approach, a total of 59 compounds were positively identified in comparison to only 22 in NIST database search of GC-EI-MS dataset. This study demonstrates the effectiveness of GC-dAPCI-MS/MS to overcome the limitations of traditional GC-EI-MS analysis when EI-MS database is not sufficient.

Graphical Abstract

Keywords

Lignin Pyrolysis Tandem mass spectrometry Dopant assistance Atmospheric pressure chemical ionization GC-MS CSI:FingerID Molecular structure prediction 

Notes

Acknowledgements

Additional thanks to Steve Veysey and Kamel Harrata in the Iowa State Chemical Instrumentation Facility for instrumentation help.

Funding Information

This work is supported by National Science Foundation, Division of Chemical, Bioengineering, Environmental and Transport Systems, Energy for Sustainability Program.

Supplementary material

13361_2018_2001_MOESM1_ESM.xlsx (23 kb)
ESM 1 (XLSX 23 kb)
13361_2018_2001_MOESM2_ESM.pdf (829 kb)
ESM 2 (PDF 828 kb)

References

  1. 1.
    Stein, S.E., Scott, D.R.: Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 5, 859–866 (1994)CrossRefGoogle Scholar
  2. 2.
    Abushareeda, W., Lyris, E., Kraiem, S., Wahaibi, A.A., Alyazidi, S., Dbes, N., Lommen, A., Nielen, M., Horvatovich, P.L., Alsayrafi, M., Georgakopoulos, C.: Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis. J. Chromatogr. B. 1063, 74–83 (2017)CrossRefGoogle Scholar
  3. 3.
    Weidt, S., Haggarty, J., Kean, R., Cojocariu, C.I., Silcock, P.J., Rajendran, R., Ramage, G., Burgess, K.E.V.: A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms. Metabolomics. 12, (2016).  https://doi.org/10.1007/s11306-016-1134-2
  4. 4.
    Dzidic, I., Carroll, D.I., Stillwell, R.N., Horning, E.C.: Comparison of positive ions formed in nickel-63 and corona discharge ion sources using nitrogen, argon, isobutane, ammonia and nitric oxide as reagents in atmospheric pressure ionization mass spectrometry. Anal. Chem. 48, 1763–1768 (1976)CrossRefGoogle Scholar
  5. 5.
    Horning, E.C., Horning, M.G., Carroll, D.I., Dzidic, I., Stillwell, R.N.: New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal. Chem. 45, 936–943 (1973)CrossRefGoogle Scholar
  6. 6.
    Li, D.-X., Gan, L., Bronja, A., Schmitz, O.J.: Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review. Anal. Chim. Acta. 891, 43–61 (2015)CrossRefGoogle Scholar
  7. 7.
    Portolés, T., Mol, J.G.J., Sancho, J.V., Hernández, F.: Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters. J. Chromatogr. A. 1339, 145–153 (2014)CrossRefGoogle Scholar
  8. 8.
    Portolés, T., Mol, J.G.J., Sancho, J.V., López, F.J., Hernández, F.: Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization. Anal. Chim. Acta. 838, 76–85 (2014)CrossRefGoogle Scholar
  9. 9.
    Nácher-Mestre, J., Serrano, R., Portolés, T., Berntssen, M.H.G., Pérez-Sánchez, J., Hernández, F.: Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization. J. Agric. Food Chem. 62, 2165–2174 (2014)CrossRefGoogle Scholar
  10. 10.
    Mesihää, S., Ketola, R.A., Pelander, A., Rasanen, I., Ojanperä, I.: Development of a GC-APCI-QTOFMS library for new psychoactive substances and comparison to a commercial ESI library. Anal. Bioanal. Chem. 409, 2007–2013 (2017)CrossRefGoogle Scholar
  11. 11.
    Ruttkies, C., Strehmel, N., Scheel, D., Neumann, S.: Annotation of metabolites from gas chromatography/atmospheric pressure chemical ionization tandem mass spectrometry data using an in silico generated compound database and MetFrag. Rapid Commun. Mass Spectrom. 29, 1521–1529 (2015)CrossRefGoogle Scholar
  12. 12.
    Portolés, T., Mol, J.G.J., Sancho, J.V., Hernández, F.: Advantages of atmospheric pressure chemical ionization in gas chromatography tandem mass spectrometry: pyrethroid insecticides as a case study. Anal. Chem. 84, 9802–9810 (2012)CrossRefGoogle Scholar
  13. 13.
    Portolés, T., Cherta, L., Beltran, J., Hernández, F.: Improved gas chromatography–tandem mass spectrometry determination of pesticide residues making use of atmospheric pressure chemical ionization. J. Chromatogr. A. 1260, 183–192 (2012)CrossRefGoogle Scholar
  14. 14.
    McEwen, C.N., McKay, R.G.: A combination atmospheric pressure LC/MS:GC/MS ion source: advantages of dual AP-LC/MS:GC/MS instrumentation. J. Am. Soc. Mass Spectrom. 16, 1730–1738 (2005)CrossRefGoogle Scholar
  15. 15.
    Song, L., Cho, D.S., Bhandari, D., Gibson, S.C., McNally, M.E., Hoffman, R.M., Cook, K.D.: Liquid chromatography/dopant-assisted atmospheric pressure chemical ionization mass spectrometry for the analysis of non-polar compounds. Int. J. Mass Spectrom. 303, 173–180 (2011)CrossRefGoogle Scholar
  16. 16.
    Covey, T.R., Thomson, B.A., Schneider, B.B.: Atmospheric pressure ion sources. Mass Spectrom. Rev. 28, 870–897 (2009)CrossRefGoogle Scholar
  17. 17.
    Habib, A., Usmanov, D., Ninomiya, S., Chen, L.C., Hiraoka, K.: Alternating current corona discharge/atmospheric pressure chemical ionization for mass spectrometry: alternating current corona discharge/APCI-MS. Rapid Commun. Mass Spectrom. 27, 2760–2766 (2013)CrossRefGoogle Scholar
  18. 18.
    Cole, D.P., Lee, Y.J.: Effective evaluation of catalytic deoxygenation for in situ catalytic fast pyrolysis using gas chromatography–high resolution mass spectrometry. J. Anal. Appl. Pyrolysis. 112, 129–134 (2015)CrossRefGoogle Scholar
  19. 19.
    Hutchinson, C.P., Lee, Y.J.: Evaluation of primary reaction pathways in thin-film pyrolysis of glucose using 13C labeling and real-time monitoring. ACS Sustain. Chem. Eng. 5, 8796–8803 (2017)CrossRefGoogle Scholar
  20. 20.
    Shen, H., Dührkop, K., Böcker, S., Rousu, J.: Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics. 30, i157–i164 (2014)CrossRefGoogle Scholar
  21. 21.
    Dührkop, K., Shen, H., Meusel, M., Rousu, J., Böcker, S.: Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. 112, 12580–12585 (2015)CrossRefGoogle Scholar
  22. 22.
    Heinonen, M., Shen, H., Zamboni, N., Rousu, J.: Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics. 28, 2333–2341 (2012)CrossRefGoogle Scholar
  23. 23.
    Schymanski, E.L., Ruttkies, C., Krauss, M., Brouard, C., Kind, T., Dührkop, K., Allen, F., Vaniya, A., Verdegem, D., Böcker, S., Rousu, J., Shen, H., Tsugawa, H., Sajed, T., Fiehn, O., Ghesquière, B., Neumann, S.: Critical assessment of small molecule identification 2016: automated methods. J. Cheminformatics. 9, (2017).  https://doi.org/10.1186/s13321-017-0207-1
  24. 24.
    Bioenergy Technologies Office Publications and Product Library, https://www1.eere.energy.gov/library/viewdetails.aspx?productid=7854&Page=1
  25. 25.
    Zhou, S., Xue, Y., Sharma, A., Bai, X.: Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin. ACS Sustain. Chem. Eng. 4, 6608–6617 (2016)CrossRefGoogle Scholar
  26. 26.
    Stein, S.E.: An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10, 770–781 (1999)CrossRefGoogle Scholar
  27. 27.
    Dromey, R.G., Stefik, M.J., Rindfleisch, T.C., Duffield, A.M.: Extraction of mass spectra free of background and neighboring component contributions from gas chromatography/mass spectrometry data. Anal. Chem. 48, 1368–1375 (1976)CrossRefGoogle Scholar
  28. 28.
    Bencsath, F.A., Field, F.H.: Ion retardation and collision-induced dissociation in the thermospray ion source. Anal. Chem. 60, 1323–1329 (1988)CrossRefGoogle Scholar
  29. 29.
    Abrankó, L., García-Reyes, J.F., Molina-Díaz, A.: In-source fragmentation and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-of-flight mass spectrometry. J. Mass Spectrom. 46, 478–488 (2011)CrossRefGoogle Scholar
  30. 30.
    Parcher, J.F., Wang, M., Chittiboyina, A.G., Khan, I.A.: In-source collision-induced dissociation (IS-CID): applications, issues and structure elucidation with single-stage mass analyzers. Drug Test. Anal. n/a-n/a.  https://doi.org/10.1002/dta.2249
  31. 31.
    Han, T., Sophonrat, N., Evangelopoulos, P., Persson, H., Yang, W., Jönsson, P.: Evolution of sulfur during fast pyrolysis of sulfonated Kraft lignin. J. Anal. Appl. Pyrolysis. (2018).  https://doi.org/10.1016/j.jaap.2018.04.006
  32. 32.
  33. 33.
    Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J., Bryant, S.H.: PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations