Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1826–1834 | Cite as

Radical Anions of Oxidized vs. Reduced Oxytocin: Influence of Disulfide Bridges on CID and Vacuum UV Photo-Fragmentation

  • Luke MacAleese
  • Marion Girod
  • Laurent Nahon
  • Alexandre Giuliani
  • Rodolphe Antoine
  • Philippe Dugourd
Focus: Application of Photons and Radicals for MS: Research Article

Abstract

The nonapeptide oxytocin (OT) is used as a model sulfur-containing peptide to study the damage induced by vacuum UV (VUV) radiations. In particular, the effect of the presence (or absence in reduced OT) of oxytocin’s internal disulfide bridge is evaluated in terms of photo-fragmentation yield and nature of the photo-fragments. Intact, as well as reduced, OT is studied as dianions and radical anions. Radical anions are prepared and photo-fragmented in two-color experiments (UV + VUV) in a linear ion trap. VUV photo-fragmentation patterns are analyzed and compared, and radical-induced mechanisms are proposed. The effect of VUV is principally to ionize but secondary fragmentation is also observed. This secondary fragmentation seems to be considerably enabled by the initial position of the radical on the molecule. In particular, the possibility to form a radical on free cysteines seems to increase the susceptibility to VUV fragmentation. Interestingly, disulfide bridges, which are fundamental for protein structure, could also be responsible for an increased resistance to ionizing radiations.

Graphical Abstract

Keywords

Electron photo-detachment Photo-fragmentation Two-colors experiment Disulfide bridge Vacuum UV Oxytocin Radical peptide 

Notes

Acknowledgments

We thank the general technical staff of SOLEIL for running the facility.

Funding Information

Research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement No. 320659). SOLEIL support is acknowledged under project no. 20120093. This research was supported by the Agence Nationale de la Recherche Scientifique, France, under the project no. BLAN08-1_348053.

Supplementary material

13361_2018_1989_MOESM1_ESM.docx (506 kb)
ESM 1 (DOCX 505 kb)

References

  1. 1.
    O’Neill, P., Wardman, P.: Radiation chemistry comes before radiation biology. Int. J. Radiat. Biol. 85, 9–25 (2009)CrossRefPubMedGoogle Scholar
  2. 2.
    Görner, H.: Photochemistry of DNA and related biomolecules: yields and consequences of photoionization. J. Photochem. Photobiol. B. 26, 117–139 (1994)CrossRefPubMedGoogle Scholar
  3. 3.
    Wien, F., Miles, A.J., Lees, J.G., Vrønning Hoffmann, S., Wallace, B.A.: VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. J. Synchrotron Radiat. 12, 517–523 (2005)CrossRefPubMedGoogle Scholar
  4. 4.
    Giese, B.: Electron transfer in DNA. Curr. Opin. Chem. Biol. 6, 612–618 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Davies, M.J., Truscott, R.J.W.: Photo-oxidation of proteins and its role in catractogenesis. J. Photochem. Photobiol. B. 63, 114–125 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    Giese, B., Napp, M., Jacques, O., Boudebous, H., Taylor, A.M., Wirz, J.: Multistep electron transfer in oligopeptides: direct observation of radical cation intermediates. Angew. Chemie - Int. Ed. 44, 4073–4075 (2005)CrossRefGoogle Scholar
  7. 7.
    Aubert, C., Vos, M.H., Mathis, P., Eker, A.P.M., Brettel, K.: Mechanism of radical transfer during photoactivation of the flavoprotein DNA photolyase. Nature. 405, 586–590 (2000)CrossRefPubMedGoogle Scholar
  8. 8.
    Stubbe, J.A., Nocera, D.G., Yee, C.S., Chang, M.C.Y.: Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103, 2167–2201 (2003)CrossRefPubMedGoogle Scholar
  9. 9.
    Mishra, A.K., Chandrasekar, R., Klapper, M.H., Faraggi, M.: Long-range electron transfer in peptides. Tyrosine reduction of the indolyl radical: reaction mechanism, modulation of reaction rate, and physiological considerations. J. Am. Chem. Soc. 116, 1414–1422 (1994)CrossRefGoogle Scholar
  10. 10.
    Dean, R.T., Hunt, J.V., Grant, A.J., Yamamoto, Y., Niki, E.: Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radic. Biol. Med. 11, 161–168 (1991)CrossRefPubMedGoogle Scholar
  11. 11.
    Hawkins, C.L., Davies, M.J.: Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta Bioenerg. 1504, 196–219 (2001)CrossRefGoogle Scholar
  12. 12.
    Haywood, J., Mozziconacci, O., Allegre, K.M., Kerwin, B.A., Schöneich, C.: Light-induced conversion of trp to gly and gly hydroperoxide in IgG1. Mol. Pharm. 10, 1146–1150 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Creed, D.: The photophysics and photochemistry of the near-UV absorbing amino-acids - III. Cystine and its simple derivatives. Photochem. Photobiol. 39, 577–583 (1984)CrossRefGoogle Scholar
  14. 14.
    Everett, S.A., Schöneich, C., Stewart, J.H., Asmus, K.D.: Perthiyl radicals, trisulfide radical ions, and sulfate formation. A combined photolysis and radiolysis study on redox processes with organic di- and trisulfides. J. Phys. Chem. 96, 306–314 (1992)CrossRefGoogle Scholar
  15. 15.
    Mason, B.D., Schöneich, C., Kerwin, B.A.: Effect of pH and light on aggregation and conformation of an IgG1 mAb. Mol. Pharm. 9, 774–790 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    Wang, W., Singh, S., Zeng, D.L., King, K., Nema, S.: Antibody structure, instability, and formulation. J. Pharm. Sci. 96, 1–26 (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    Simons, J.: Molecular anions. J. Phys. Chem. A. 112, 6401–6511 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    Osburn, S., Burgie, T., Berden, G., Oomens, J., O’Hair, R.A.J., Ryzhov, V.: Structure and reactivity of homocysteine radical cation in the gas phase studied by ion-molecule reactions and infrared multiple photon dissociation. J. Phys. Chem. A. 117, 1144–1150 (2013)CrossRefPubMedGoogle Scholar
  19. 19.
    Lesslie, M., Lau, J.K.C., Lawler, J.T., Siu, K.W.M., Steinmetz, V., Maître, P., Hopkinson, A.C., Ryzhov, V.: Cysteine radical/metal ion adducts: a gas-phase structural elucidation and reactivity study. Chem. Aust. 81, 444–452 (2016)Google Scholar
  20. 20.
    Parker, W.R., Holden, D.D., Cotham, V.C., Xu, H., Brodbelt, J.S.: Cysteine-selective peptide identification: selenium-based chromophore for selective S–Se bond cleavage with 266 nm ultraviolet photodissociation. Anal. Chem. 88, 7222–7229 (2016)CrossRefPubMedGoogle Scholar
  21. 21.
    Diedrich, J.K., Julian, R.R.: Site selective fragmentation of peptides and proteins at quinone modified cysteine residues investigated by ESI-MS. Anal. Chem. 82, 4006–4014 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brunet, C., Antoine, R., Allouche, A.-R., Dugourd, P., Canon, F., Giuliani, A., Nahon, L.: Gas phase photo-formation and vacuum UV photofragmentation spectroscopy of tryptophan and tyrosine radical-containing peptides. J. Phys. Chem. A. 115, 8933–8939 (2011)CrossRefPubMedGoogle Scholar
  23. 23.
    Meyer-Lindenberg, A., Domes, G., Kirsch, P., Heinrichs, M.: Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011)CrossRefPubMedGoogle Scholar
  24. 24.
    Mozziconacci, O., Schöneich, C.: Photodegragation of oxytocin and thermal stability of photoproducts. J. Pharm. Sci. 101, 3331–3346 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    Hoffman, M.Z., Hayon, E.: One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation, and decay kinetics of the RSSR– radical. J. Am. Chem. Soc. 94, 7950–7957 (1972)CrossRefGoogle Scholar
  26. 26.
    Tung, T.-L., Stone, J.A.: The formation and reactions of disulfide radical anions in aqueous solution. Can. J. Chem. 53, 3153–3157 (1975)CrossRefGoogle Scholar
  27. 27.
    Milosavljević, A.R., Nicolas, C., Gil, J.-F., Canon, F., Réfrégiers, M., Nahon, L., Giuliani, A.: VUV synchrotron radiation: a new activation technique for tandem mass spectrometry. J. Synchrotron Radiat. 19, 174–178 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    Nahon, L., de Oliveira, N., Garcia, G.A., Gil, J.-F., Pilette, B., Marcouillé, O., Lagarde, B., Polack, F.: DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J. Synchrotron Radiat. 19, 508–520 (2012)CrossRefPubMedGoogle Scholar
  29. 29.
    Brunet, C., Antoine, R., Dugourd, P., Canon, F., Giuliani, A., Nahon, L.: Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy. J. Am. Soc. Mass Spectrom. 23, 274–281 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    Milosavljević, A.R., Nicolas, C., Lemaire, J., Dehon, C., Thissen, R., Bizau, J.-M., Réfrégiers, M., Nahon, L., Giuliani, A.: Photoionization of a protein isolated in vacuo. Phys. Chem. Chem. Phys. 13, 15432–15436 (2011)CrossRefPubMedGoogle Scholar
  31. 31.
    Sohn, C.H., Gao, J., Thomas, D.A., Kim, T.-Y., Goddard III, W.A., Beauchamp, J.L.: Mechanisms and energetics of free radical initiated disulfide bond cleavage in model peptides and insulin by mass spectrometry. Chem. Sci. 6, 4550–4560 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ganisl, B., Valovka, T., Hartl, M., Taucher, M., Bister, K., Breuker, K.: Electron detachment dissociation for top-down mass spectrometry of acidic proteins. Chem. - A Eur. J. 17, 4460–4469 (2011)CrossRefGoogle Scholar
  33. 33.
    Agarwal, A., Diedrich, J.K., Julian, R.R.: Direct elucidation of disulfide bond partners using ultraviolet photodissociation mass spectrometry. Anal. Chem. 83, 6455–6458 (2011)CrossRefPubMedGoogle Scholar
  34. 34.
    Bilusich, D., Bowie, J.H.: Fragmentation of (M-H)- anions of underivatized peptides. Part 2: characteristic cleavages of Ser and Cys and of disulfides and other post-translational modifications, together with some unusual internal processes. Mass Spectrom. Rev. 28, 20–34 (2009)CrossRefPubMedGoogle Scholar
  35. 35.
    Thakur, S.S., Balaram, P.: Fragmentation of peptide disulfides under conditions of negative ion mass spectrometry: studies of oxidized glutathione and contryphan. J. Am. Soc. Mass Spectrom. 19, 358–366 (2008)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière UMR 5306VilleurbanneFrance
  2. 2.Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques UMR 5280VilleurbanneFrance
  3. 3.Synchrotron SOLEILGif Sur YvetteFrance
  4. 4.UAR1008 CEPIA, INRANantesFrance

Personalised recommendations