Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1861–1869 | Cite as

Determining Energies and Cross Sections of Individual Ions Using Higher-Order Harmonics in Fourier Transform Charge Detection Mass Spectrometry (FT-CDMS)

  • Conner C. Harper
  • Andrew G. Elliott
  • Haw-Wei Lin
  • Evan R. Williams
Focus: Application of Photons and Radicals for MS: Research Article

Abstract

A general method for in situ measurements of the energy of individual ions trapped and weighed using charge detection mass spectrometry (CDMS) is described. Highly charged (> 300 e), individual polyethylene glycol (PEG) ions are trapped and oscillate within an electrostatic trap, producing a time domain signal. A segmented Fourier transform (FT) of this signal yields the temporal evolution of the fundamental and harmonic frequencies of ion motion throughout the 500-ms trap time. The ratio of the fundamental frequency and second harmonic (HAR) depends on the ion energy, which is an essential parameter for measuring ion mass in CDMS. This relationship is calibrated using simulated ion signals, and the calibration is compared to the HAR values measured for PEG ion signals where the ion energy was also determined using an independent method that requires that the ions be highly charged (> 300 e). The mean error of 0.6% between the two measurements indicates that the HAR method is an accurate means of ion energy determination that does not depend on ion size or charge. The HAR is determined dynamically over the entire trapping period, making it possible to observe the change in ion energy that takes place as solvent evaporates from the ion and collisions with background gas occur. This method makes it possible to measure mass changes, either from solvent evaporation or from molecular fragmentation (MSn), as well as the cross sections of ions measured using CDMS.

Graphical Abstract

Keywords

Charge detection mass spectrometry Ion mobility Ion energy Megadalton Collision cross section MS^n Harmonics Fourier transform 

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation under CHE-1609866. The authors thank Professor Martin F. Jarrold for helpful discussions and Professor Ryan R. Julian for his innovative contributions to science.

Supplementary material

13361_2018_1987_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 40 kb)

References

  1. 1.
    Snijder, J., Rose, R.J., Veesler, D., Johnson, J.E., Heck, A.J.: Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. 52, 4020–4023 (2013)CrossRefGoogle Scholar
  2. 2.
    Lössl, P., Snijder, J., Heck, A.J.R.: Boundaries of mass resolution in native mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 906–917 (2014)CrossRefPubMedGoogle Scholar
  3. 3.
    Smith, R.D., Cheng, X., Brace, J.E., Hofstadler, S.A., Anderson, G.A.: Trapping, detection and reaction of very large single molecular ions by mass spectrometry. Nature. 369, 137–139 (1994)CrossRefGoogle Scholar
  4. 4.
    Bruce, J.E., Cheng, X., Bakhtiar, R., Wu, Q., Hofstadler, S.A., Anderson, G.A., Smith, R.D.: Trapping, detection, and mass measurement of individual ions in a Fourier transform ion cyclotron resonance mass spectrometer. J. Am. Chem. Soc. 116, 7839–7847 (1994)CrossRefGoogle Scholar
  5. 5.
    Wuerker, R.F., Shelton, H., Langmuir, R.V.: Electrodynamic containment of charged particles. J. Appl. Phys. 30, 342–349 (1959)CrossRefGoogle Scholar
  6. 6.
    Philip, M.A., Gelbard, F., Arnold, S.: An absolute method for aerosol particle mass and charge measurement. J. Colloid Interface Sci. 91, 507–515 (1983)CrossRefGoogle Scholar
  7. 7.
    Hars, G., Tass, Z.: Application of quadrupole ion trap for the accurate mass determination of submicron size charged particles. J. Appl. Phys. 77, 4245–4250 (1995)CrossRefGoogle Scholar
  8. 8.
    Schlemmer, S., Illemann, J., Wellert, S., Gerlich, D.: Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap. J. Appl. Phys. 90, 5410–5418 (2001)CrossRefGoogle Scholar
  9. 9.
    Nie, Z., Tzeng, Y., Chang, H., Chiu, C., Chang, C., Chang, C., Tao, M.: Microscopy-based mass measurement of a single whole virus in a cylindrical ion trap. Angew. Chem. Int. Ed. 45, 8131–8134 (2006)CrossRefGoogle Scholar
  10. 10.
    Cai, Y., Peng, W.P., Kuo, S.J., Lee, Y.T., Chang, H.C.: Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals. Anal. Chem. 74, 232–238 (2002)CrossRefPubMedGoogle Scholar
  11. 11.
    Shelton, H., Hendricks, C.D., Wuerker, R.F.: Electrostatic acceleration of microparticles to hypervelocities. J. Appl. Phys. 31, 1243–1246 (1960)CrossRefGoogle Scholar
  12. 12.
    Hendricks Jr., C. D.: Charged droplet experiments. J. Colloid Sci. 17, 249–259 (1962)Google Scholar
  13. 13.
    Stradling, G. L., Idzorek G. C., Shafer B. P., Curling Jr. H. L., Collopy M. T., Blossom A. A. H., Fuerstenau S.: Ultra-high velocity impacts: cratering studies of microscopic impacts from 3 km/s to 30 km/s. Int. J. Impact. Eng. 14, 719–727 (1993)Google Scholar
  14. 14.
    Viodé, A., Dagany, X., Kerleroux, M., Dugourd, P., Doussineau, T., Charles, L., Antoine, R.: Coupling of size-exclusion chromatography with electrospray ionization charge-detection mass spectrometry for the characterization of synthetic polymers of ultra-high molar mass. Rapid Commun. Mass Spectrom. 30, 132–136 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    Fuerstenau, S.D., Benner, W.H., Thomas, J.J., Brugidou, C., Bothner, B., Siuzdak, G.: Mass spectrometry of an intact virus. Angew. Chem. Int. Ed. 40, 542–544 (2001)CrossRefGoogle Scholar
  16. 16.
    Fuerstenau, S.D., Benner, W.H.: Molecular weight determination of Megadalton DNA electrospray ions using charge detection time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 9, 1528–1538 (1995)CrossRefPubMedGoogle Scholar
  17. 17.
    Schultz, J.C., Hack, C.A., Benner, W.H.: Mass determination of Megadalton-DNA electrospray ions using charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 305–313 (1998)CrossRefPubMedGoogle Scholar
  18. 18.
    Doussineau, T., Désert, A., Lambert, O., Taveau, J., Lansalot, M., Dugourd, P., Bourgeat-Lami, E., Ravaine, S., Duguet, E., Antoine, R.: Charge detection mass spectrometry for the characterization of mass and surface area of composite nanoparticles. J. Phys. Chem. C. 119, 10844–10849 (2015)CrossRefGoogle Scholar
  19. 19.
    Doussineau, T., Bao, C.Y., Antoine, R., Dugourd, P., Zhang, W., D'Agosto, F., Charleux, B.: Direct molar mass determination of self-assembled amphiphilic block copolymer nanoobjects using electrospray-charge detection mass spectrometry. ACS Macro Lett. 1, 414–417 (2012)CrossRefGoogle Scholar
  20. 20.
    Benner, W.H.: A gated electrostatic ion trap to repetitiously measure the charge and M/Z of large electrospray ions. Anal. Chem. 69, 4162–4168 (1997)CrossRefGoogle Scholar
  21. 21.
    Doussineau, T., Yu Bao, C., Clavier, C., Dagany, X., Kerleroux, M., Antoine, R., Dugourd, P.: Infrared multiphoton dissociation tandem charge detection-mass spectrometry of single Megadalton electrosprayed ions. Rev. Sci. Instrum. 82, 084104 (2011)CrossRefPubMedGoogle Scholar
  22. 22.
    Doussineau, T., Antoine, R., Santacreu, M., Dugourd, P.: Pushing the limit of infrared multiphoton dissociation to Megadalton-size DNA ions. J. Phys. Chem. Lett. 3, 2141–2145 (2012)CrossRefPubMedGoogle Scholar
  23. 23.
    Antoine, R., Doussineau, T., Dugourd, P., Calvo, F.: Multiphoton dissociation of macromolecular ions at the single-molecule level. Phys. Rev. A. 87, 013435 (2013)CrossRefGoogle Scholar
  24. 24.
    Doussineau, T., Paletto, P., Dugourd, P., Antoine, R.: Multiphoton dissociation of electrosprayed Megadalton-sized DNA ions in a charge-detection mass spectrometer. J. Am. Soc. Mass Spectrom. 26, 7–13 (2015)CrossRefPubMedGoogle Scholar
  25. 25.
    Elliott, A.G., Merenbloom, S.I., Chakrabarty, S., Williams, E.R.: Single particle analyzer of mass: a charge detection mass spectrometer with a multi-detector electrostatic ion trap. Int. J. Mass Spectrom. 414, 45–55 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Contino, N.C., Jarrold, M.F.: Charge detection mass spectrometry for single ions with a limit of detection of 30 charges. Int. J. Mass Spectrom. 345-347, 153–159 (2013)CrossRefGoogle Scholar
  27. 27.
    Pierson, E.E., Keifer, D.Z., Contino, N.C., Jarrold, M.F.: Probing higher order multimers of pyruvate kinase with charge detection mass spectrometry. Int. J. Mass Spectrom. 337, 50–56 (2013)CrossRefGoogle Scholar
  28. 28.
    Pierson, E.E., Keifer, D.Z., Selzer, L., Lee, L.S., Contino, N.C., Wang, J.C., Zlotnick, A., Jarrold, M.F.: Detection of late intermediates in virus capsid assembly by charge detection mass spectrometry. J. Am. Chem. Soc. 136, 3536–3541 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Keifer, D.Z., Pierson, E.E., Hogan, J.A., Bedwell, G.J., Prevelige, P.E., Jarrold, M.F.: Charge detection mass spectrometry of bacteriophage P22 Procapsid distributions above 20 MDa. Rapid Commun. Mass Spectrom. 28, 483–488 (2014)CrossRefPubMedGoogle Scholar
  30. 30.
    Kukreja, A.A., Wang, J.C., Pierson, E., Keifer, D.Z., Selzer, L., Tan, Z., Dragnea, B., Jarrold, M.F., Zlotnick, A.: Structurally similar woodchuck and human hepadnavirus core proteins have distinctly different temperature dependences of assembly. J. Virol. 88, 14105–14115 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pierson, E.E., Keifer, D.Z., Kukreja, A.A., Wang, J.C., Zlotnick, A., Jarrold, M.F.: Charge detection mass spectrometry identifies preferred non-icosahedral polymorphs in the self-assembly of woodchuck hepatitis virus capsids. J. Mol. Biol. 428, 292–300 (2016)CrossRefPubMedGoogle Scholar
  32. 32.
    Pierson, E.E., Keifer, D.Z., Asokan, A., Jarrold, M.F.: Resolving adeno-associated viral particle diversity with charge detection mass spectrometry. Anal. Chem. 88, 6718–6725 (2016)CrossRefPubMedGoogle Scholar
  33. 33.
    Keifer, D.Z., Motwani, T., Teschke, C.M., Jarrold, M.F.: Acquiring structural information on virus particles with charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 1028–1036 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lutomski, C.A., Lyktey, N.A., Zhao, Z., Pierson, E.E., Zlotnick, A., Jarrold, M.F.: Hepatitis B virus capsid completion occurs through error correction. J. Am. Chem. Soc. 139, 16932–16938 (2017)CrossRefPubMedGoogle Scholar
  35. 35.
    Pierson, E.E., Contino, N.C., Keifer, D.Z., Jarrold, M.F.: Charge detection mass spectrometry for single ions with an uncertainty in the charge measurement of 0.65 e. J. Am. Soc. Mass Spectrom. 26, 1213–1220 (2015)CrossRefPubMedGoogle Scholar
  36. 36.
    Keifer, D.Z., Shinholt, D.L., Jarrold, M.F.: Charge detection mass spectrometry with almost perfect charge accuracy. Anal. Chem. 87, 10330–10337 (2015)CrossRefPubMedGoogle Scholar
  37. 37.
    Elliott, A.G., Harper, C.C., Lin, H.-W., Susa, A.C., Xia, Z., Williams, E.R.: Simultaneous measurements of mass and collisional cross-section of single ions with charge detection mass spectrometry. Anal. Chem. 89, 7701–7708 (2017)Google Scholar
  38. 38.
    Elliott, A.G., Harper, C.C., Lin, H.-W., Williams, E.R.: Mass, mobility, and MSN measurements of single ions using charge detection mass spectrometry. Analyst. 142, 2760–2769 (2017)CrossRefPubMedGoogle Scholar
  39. 39.
    Keifer, D.Z., Alexander, A.W., Jarrold, M.F.: Spontaneous mass and charge losses from single multi-Megadalton ions studied by charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 498–506 (2017)CrossRefPubMedGoogle Scholar
  40. 40.
    Smith, S.W.: The scientist and engineer’s guide to digital signal processing, 1st edn. California Technical Publ, Calif (1997)Google Scholar
  41. 41.
    Alexander, J.D., Graham, L., Calvert, C.R., Kelly, O., King, R.B., Williams, I.D., Greenwood, J.B.: Determination of absolute ion yields from a MALDI source through calibration of an image-charge detector. Meas. Sci. Technol. 21, 045802 (2010)CrossRefGoogle Scholar
  42. 42.
    Weinheimer, A.J.: The charge induced on a conducting cylinder by a point charge and its application to the measurement of charge on precipitation. J. Atmos. Ocean. Technol. 5, 298–304 (1988)CrossRefGoogle Scholar
  43. 43.
    Uetrecht, C., Versluis, C., Watts, N.R., Wingfield, P.T., Steven, A.C., Heck, A.J.R.: Stability and shape of hepatitis B virus capsids in vacuo. Angew. Chem. Int. Ed. 47, 6247–6251 (2008)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Conner C. Harper
    • 1
  • Andrew G. Elliott
    • 1
  • Haw-Wei Lin
    • 1
  • Evan R. Williams
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations