Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1892–1900 | Cite as

Carbon Nanoparticles and Graphene Nanosheets as MALDI Matrices in Glycomics: a New Approach to Improve Glycan Profiling in Biological Samples

  • Alireza Banazadeh
  • Wenjing Peng
  • Lucas Veillon
  • Yehia MechrefEmail author
Research Article


Glycomics continues to be a highly dynamic and interesting research area due to the need to comprehensively understand the biological attributes of glycosylation in many important biological functions such as the immune response, cell development, cell differentiation/adhesion, and host-pathogen interactions. Although matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) has proven to be suitable for glycomic profiling studies, there is a need for improved sensitivity in the detection of native glycans, which ionize inefficiently. In this study, we investigated the efficiencies of graphene nanosheets (GNs) and carbon nanoparticles (CNPs) as MALDI matrices and co-matrices in glycan profiling. Our results indicated an enhancement of signal intensity by several orders of magnitude upon using GNs and CNPs in MALDI analysis of N-glycans derived from a variety of biological samples. Interestingly, increasing the amounts of CNPs and GNs improved not only the signal intensities but also prompted in-source decay (ISD) fragmentations, which produced extensive glycosidic and cross-ring cleavages. Our results indicated that the extent of ISD fragmentation could be modulated by CNP and GN concentrations, to obtain MS2 and pseudo-MS3 spectra. The results for glycan profiling in high salt solutions confirmed high salt-tolerance capacities for both CNPs and GNs. Finally, the results showed that by using CNPs and GNs as co-matrices, DHB crystal formation was more homogeneous which improved shot-to-shot reproducibility and sensitivity.

Graphical Abstract


Nanoparticles Graphene MALDI-MS Glycans 



This work was supported by an NIH grant (1R01GM112490-04).

Supplementary material

13361_2018_1985_MOESM1_ESM.docx (3.3 mb)
ESM 1 (DOCX 3350 kb)


  1. 1.
    Abou-Abbass, H., Abou-El-Hassan, H., Bahmad, H., Zibara, K., Zebian, A., Youssef, R., Ismail, J., Zhu, R., Zhou, S., Dong, X., Nasser, M., Bahmad, M., Darwish, H., Mechref, Y., Kobeissy, F.: Glycosylation and other PTMs alterations in neurodegenerative diseases: current status and future role in neurotrauma. Electrophoresis. 37, 1549–1561 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Banazadeh, A., Veillon, L., Wooding, K.M., Zabet-Moghaddam, M., Mechref, Y.: Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis. 38, 162–189 (2017)CrossRefPubMedGoogle Scholar
  3. 3.
    Mechref, Y., Hu, Y., Desantos-Garcia, J.L., Hussein, A., Tang, H.: Quantitative glycomics strategies. Mol. Cell. Proteomics. 12, 874–884 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mechref, Y., Hu, Y., Garcia, A., Hussein, A.: Identifying cancer biomarkers by mass spectrometry-based glycomics. Electrophoresis. 33, 1755–1767 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mechref, Y., Hu, Y., Garcia, A., Zhou, S., Desantos-Garcia, J.L., Hussein, A.: Defining putative glycan cancer biomarkers by MS. Bioanalysis. 4, 2457–2469 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Song, E., Mechref, Y.: Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark. Med. 9, 835–844 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Albrecht, S., Mittermayr, S., Smith, J., Martin, S.M., Doherty, M., Bones, J.: Twoplex 12/13 C6 aniline stable isotope and linkage-specific sialic acid labeling 2D-LC-MS workflow for quantitative N-glycomics. Proteomics. 17, (2017).
  8. 8.
    Cheng, C.W., Chou, C.C., Hsieh, H.W., Tu, Z., Lin, C.H., Nycholat, C., Fukuda, M., Khoo, K.H.: Efficient mapping of sulfated Glycotopes by negative ion mode nanoLC-MS/MS-based Sulfoglycomic analysis of Permethylated Glycans. Anal. Chem. 87, 6380–6388 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lauber, M.A., Yu, Y.Q., Brousmiche, D.W., Hua, Z., Koza, S.M., Magnelli, P., Guthrie, E., Taron, C.H., Fountain, K.J.: Rapid preparation of released N-Glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal. Chem. 87, 5401–5409 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    Liu, S., Gao, W., Wang, Y., He, Z., Feng, X., Liu, B.F., Liu, X.: Comprehensive N-glycan profiling of Cetuximab biosimilar candidate by NP-HPLC and MALDI-MS. PLoS One. 12, e0170013 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Snyder, C.M., Alley Jr., W.R., Campos, M.I., Svoboda, M., Goetz, J.A., Vasseur, J.A., Jacobson, S.C., Novotny, M.V.: Complementary Glycomic analyses of sera derived from colorectal Cancer patients by MALDI-TOF-MS and microchip electrophoresis. Anal. Chem. 88, 9597–9605 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Song, X., Ju, H., Lasanajak, Y., Kudelka, M.R., Smith, D.F., Cummings, R.D.: Oxidative release of natural glycans for functional glycomics. Nat. Methods. 13, 528–534 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Veillon, L., Huang, Y., Peng, W., Dong, X., Cho, B.G., Mechref, Y.: Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis. 38, 2100–2114 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wooding, K.M., Peng, W., Mechref, Y.: Characterization of pharmaceutical IgG and Biosimilars using miniaturized platforms and LC-MS/MS. Curr. Pharm. Biotechnol. 17, 788–801 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhao, J., Li, S., Li, C., Wu, S.L., Xu, W., Chen, Y., Shameem, M., Richardson, D., Li, H.: Identification of low abundant isomeric N-glycan structures in biological therapeutics by LC/MS. Anal. Chem. 88, 7049–7059 (2016)CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou, S., Hu, Y., Veillon, L., Snovida, S.I., Rogers, J.C., Saba, J., Mechref, Y.: Quantitative LC-MS/MS Glycomic analysis of biological samples using AminoxyTMT. Anal. Chem. 88, 7515–7522 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou, S., Huang, Y., Dong, X., Peng, W., Veillon, L., Kitagawa, D.A.S., Aquino, A.J.A., Mechref, Y.: Isomeric separation of Permethylated Glycans by porous graphitic carbon (PGC)-LC-MS/MS at high temperatures. Anal. Chem. 89, 6590–6597 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Qin, H., Zhao, L., Li, R., Wu, R., Zou, H.: Size-selective enrichment of N-linked glycans using highly ordered mesoporous carbon material and detection by MALDI-TOF MS. Anal. Chem. 83, 7721–7728 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    Zhou, H., Warren, P.G., Froehlich, J.W., Lee, R.S.: Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS. Anal. Chem. 86, 6277–6284 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chen, S., Zheng, H., Wang, J., Hou, J., He, Q., Liu, H., Xiong, C., Kong, X., Nie, Z.: Carbon nanodots as a matrix for the analysis of low-molecular-weight molecules in both positive- and negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantification of glucose and uric acid in real samples. Anal. Chem. 85, 6646–6652 (2013)CrossRefPubMedGoogle Scholar
  21. 21.
    Chen, Y., Gao, D., Bai, H., Liu, H., Lin, S., Jiang, Y.: Carbon dots and 9AA as a binary matrix for the detection of small molecules by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 1227–1235 (2016)CrossRefPubMedGoogle Scholar
  22. 22.
    Gulbakan, B., Yasun, E., Shukoor, M.I., Zhu, Z., You, M., Tan, X., Sanchez, H., Powell, D.H., Dai, H., Tan, W.: A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J. Am. Chem. Soc. 132, 17408–17410 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu, Q., Cheng, M., Wang, J., Jiang, G.: Graphene oxide nanoribbons: improved synthesis and application in MALDI mass spectrometry. Chemistry. 21, 5594–5599 (2015)CrossRefPubMedGoogle Scholar
  24. 24.
    Liu, Y., Liu, J., Deng, C., Zhang, X.: Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. Rapid Commun. Mass Spectrom. 25, 3223–3234 (2011)CrossRefPubMedGoogle Scholar
  25. 25.
    Lu, M., Lai, Y., Chen, G., Cai, Z.: Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal. Chem. 83, 3161–3169 (2011)CrossRefPubMedGoogle Scholar
  26. 26.
    Lu, W., Li, Y., Li, R., Shuang, S., Dong, C., Cai, Z.: Facile synthesis of N-doped carbon dots as a new matrix for detection of Hydroxy-polycyclic aromatic hydrocarbons by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ACS Appl. Mater. Interfaces. 8, 12976–12984 (2016)CrossRefPubMedGoogle Scholar
  27. 27.
    Rodriguez, C.E., Palacios, J., Fajardo, I., Urdiales, J.L., Le Guevel, X., Lozano, J., Sanchez-Jimenez, F.: Conventional matrices loaded onto a graphene layer enhances MALDI-TOF/TOF signal: its application to improve detection of phosphorylated peptides. J. Am. Soc. Mass Spectrom. 27, 366–369 (2016)CrossRefPubMedGoogle Scholar
  28. 28.
    Tang, L.A., Wang, J., Loh, K.P.: Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J. Am. Chem. Soc. 132, 10976–10977 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    Lee, J., Kim, Y.K., Min, D.H.: Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J. Am. Chem. Soc. 132, 14714–14717 (2010)CrossRefPubMedGoogle Scholar
  30. 30.
    Wang, J., Liu, Q., Liang, Y., Jiang, G.: Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 408, 2861–2873 (2016)CrossRefPubMedGoogle Scholar
  31. 31.
    Smargiasso, N., De Pauw, E.: Optimization of matrix conditions for the control of MALDI in-source decay of permethylated glycans. Anal. Chem. 82, 9248–9253 (2010)CrossRefPubMedGoogle Scholar
  32. 32.
    Liang, Q., Macher, T., Xu, Y., Bao, Y., Cassady, C.J.: MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal. Chem. 86, 8496–8503 (2014)CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou, S., Dong, X., Veillon, L., Huang, Y., Mechref, Y.: LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal. Bioanal. Chem. 409, 453–466 (2017)CrossRefPubMedGoogle Scholar
  34. 34.
    Zhou, S., Wooding, K.M., Mechref, Y.: Analysis of Permethylated glycan by liquid chromatography (LC) and mass spectrometry (MS). Methods Mol. Biol. 1503, 83–96 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Krishnamoorthy, K., Veerapandian, M., Yun, K., Kim, S.J.: The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 53, 38–49 (2013)CrossRefGoogle Scholar
  36. 36.
    Cohen, S.L., Chait, B.T.: Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem. 68, 31–37 (1996)CrossRefPubMedGoogle Scholar
  37. 37.
    Shin, D., Kim, I., Paek, J., Kim, J.: A novel “freeze vacuum drying” crystallization method toward quantitative MALDI-MS. Bull. Kor. Chem. Soc. 38, 133–135 (2017)CrossRefGoogle Scholar
  38. 38.
    Fu, D., Chen, L., O'Neill, R.A.: A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr. Res. 261, 173–186 (1994)CrossRefPubMedGoogle Scholar
  39. 39.
    Mechref, Y., Novotny, M.V., Krishnan, C.: Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem. 75, 4895–4903 (2003)CrossRefPubMedGoogle Scholar
  40. 40.
    Harvey, D.J.: Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2011–2012. Mass Spectrom. Rev. 36, 255–422 (2017)CrossRefPubMedGoogle Scholar
  41. 41.
    Mechref, Y., Novotny, M.V.: Matrix-assisted laser desorption/ionization mass spectrometry of acidic glycoconjugates facilitated by the use of spermine as a co-matrix. J. Am. Soc. Mass Spectrom. 9, 1293–1302 (1998)CrossRefPubMedGoogle Scholar
  42. 42.
    Green, E.D., Adelt, G., Baenziger, J.U., Wilson, S., Van Halbeek, H.: The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J. Biol. Chem. 263, 18253–18268 (1988)PubMedGoogle Scholar
  43. 43.
    Hu, Y., Shihab, T., Zhou, S., Wooding, K., Mechref, Y.: LC-MS/MS of permethylated N-glycans derived from model and human blood serum glycoproteins. Electrophoresis. 37, 1498–1505 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Asakawa, D., Smargiasso, N., De Pauw, E.: Identification and relative-quantification of glycans by matrix-assisted laser desorption/ionization in-source decay with hydrogen abstraction. Anal. Chem. 84, 7463–7468 (2012)CrossRefPubMedGoogle Scholar
  45. 45.
    Melmer, M., Stangler, T., Premstaller, A., Lindner, W.: Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J. Chromatogr. A. 1218, 118–123 (2011)CrossRefPubMedGoogle Scholar
  46. 46.
    Ruhaak, L.R., Deelder, A.M., Wuhrer, M.: Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 394, 163–174 (2009)CrossRefPubMedGoogle Scholar
  47. 47.
    Hu, Y., Mechref, Y.: Comparing MALDI-MS, RP-LC-MALDI-MS and RP-LC-ESI-MS glycomic profiles of permethylated N-glycans derived from model glycoproteins and human blood serum. Electrophoresis. 33, 1768–1777 (2012)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Alireza Banazadeh
    • 1
  • Wenjing Peng
    • 1
  • Lucas Veillon
    • 1
  • Yehia Mechref
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA

Personalised recommendations