Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer’s Disease

  • Matthew A. Downey
  • Maxwell J. Giammona
  • Christian A. Lang
  • Steven K. Buratto
  • Ambuj Singh
  • Michael T. BowersEmail author
Focus: Honoring Carol V. Robinson's Election to the National Academy of Sciences: Research Article


Alzheimer’s disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule’s efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development.

Graphical Abstract


Aggregation Amyloid-β protein Aβ42 Ion mobility mass spectrometry Atomic force microscopy Inhibition Joint pharmacophore space Alzheimer’s disease 


Funding Information

The authors gratefully acknowledge support from the National Institute of Health – National Institute of Aging under grant 1R01AG047116 (M.T.B.) and funding through MURI and DURIP programs of the U.S. Army Research Office under Grant Nos. DAAD 19-03-1-0121 and W911NF-09-1-0280 for the purchase of the AFM instrument (S.K.B.).

Supplementary material

13361_2018_1975_MOESM1_ESM.pdf (600 kb)
ESM 1 (PDF 600 kb)


  1. 1.
    2017 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 13 (4), 325–373Google Scholar
  2. 2.
    Götz, J., Chen, F., van Dorpe, J., Nitsch, R.M.: Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science (New York, N.Y.). 293(5534), 1491 (2001)Google Scholar
  3. 3.
    Lewis, J., Dickson, D.W., Lin, W.-L., Chisholm, L., Corral, A., Jones, G., Yen, S.-H., Sahara, N., Skipper, L., Yager, D., Eckman, C., Hardy, J., Hutton, M., McGowan, E.: Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science (New York, N.Y.). 293(5534), 1487 (2001)Google Scholar
  4. 4.
    Umeda, T., Maekawa, S., Kimura, T., Takashima, A., Tomiyama, T., Mori, H.: Neurofibrillary tangle formation by introducing wild-type human tau into APP transgenic mice. Acta Neuropathol. 127(5), 685–698 (2014)PubMedGoogle Scholar
  5. 5.
    Haass, C., Schlossmacher, M.G., Hung, A.Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B.L., Lieberburg, I., Koo, E.H., Schenk, D., Teplow, D.B., Selkoe, D.J.: Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature. 359, 322 (1992)PubMedGoogle Scholar
  6. 6.
    Takami, M., Nagashima, Y., Sano, Y., Ishihara, S., Morishima-Kawashima, M., Funamoto, S., Ihara, Y.: γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 29(41), 13042 (2009)PubMedGoogle Scholar
  7. 7.
    Jakob-Roetne, R., Jacobsen, H.: Alzheimer’s disease: from pathology to therapeutic approaches. Angew. Chem. Int. Ed. 48(17), 3030–3059 (2009)Google Scholar
  8. 8.
    Dahlgren, K.N., Manelli, A.M., Stine, W.B., Baker, L.K., Krafft, G.A., LaDu, M.J.: Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277(35), 32046–32053 (2002)PubMedGoogle Scholar
  9. 9.
    Lesné, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M., Ashe, K.H.: A specific amyloid-β protein assembly in the brain impairs memory. Nature. 440, 352 (2006)PubMedGoogle Scholar
  10. 10.
    Cheng, I.H., Scearce-Levie, K., Legleiter, J., Palop, J.J., Gerstein, H., Bien-Ly, N., Puoliväli, J., Lesné, S., Ashe, K.H., Muchowski, P.J., Mucke, L.: Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282(33), 23818–23828 (2007)PubMedGoogle Scholar
  11. 11.
    Mann, D.M., Iwatsubo, T., Ihara, Y., Cairns, N.J., Lantos, P.L., Bogdanovic, N., Lannfelt, L., Winblad, B., Maat-Schieman, M.L., Rossor, M.N.: Predominant deposition of amyloid-β42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene. Am. J. Pathol. 148(4), 1257–1266 (1996)PubMedPubMedCentralGoogle Scholar
  12. 12.
    Billings, L.M., Oddo, S., Green, K.N., McGaugh, J.L., LaFerla, F.M.: Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron. 45(5), 675–688 (2005)PubMedGoogle Scholar
  13. 13.
    Jin, S., Kedia, N., Illes-Toth, E., Haralampiev, I., Prisner, S., Herrmann, A., Wanker, E.E., Bieschke, J.: Amyloid-β(1–42) aggregation initiates its cellular uptake and cytotoxicity. J. Biol. Chem. 291(37), 19590–19606 (2016)PubMedPubMedCentralGoogle Scholar
  14. 14.
    Dodart, J.-C., Bales, K.R., Gannon, K.S., Greene, S.J., DeMattos, R.B., Mathis, C., DeLong, C.A., Wu, S., Wu, X., Holtzman, D.M., Paul, S.M.: Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat. Neurosci. 5, 452 (2002)PubMedGoogle Scholar
  15. 15.
    Gandy, S., Simon, A.J., Steele, J.W., Lublin, A.L., Lah, J.J., Walker, L.C., Levey, A.I., Krafft, G.A., Levy, E., Checler, F., Glabe, C., Bilker, W.B., Abel, T., Schmeidler, J., Ehrlich, M.E.: Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-β oligomers. Ann. Neurol. 68(2), 220–230 (2010)PubMedPubMedCentralGoogle Scholar
  16. 16.
    Erten-Lyons, D., Woltjer, R.L., Dodge, H., Nixon, R., Vorobik, R., Calvert, J.F., Leahy, M., Montine, T., Kaye, J.: Factors associated with resistance to dementia despite high Alzheimer disease pathology. Neurology. 72(4), 354 (2009)PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lesné, S.E., Sherman, M.A., Grant, M., Kuskowski, M., Schneider, J.A., Bennett, D.A., Ashe, K.H.: Brain amyloid-β oligomers in aging and Alzheimer’s disease. Brain. 136(5), 1383–1398 (2013)PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sakono, M., Zako, T.: Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 277(6), 1348–1358 (2010)PubMedGoogle Scholar
  19. 19.
    Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.-E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1, 326 (2009)PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.-E., Bitan, G., Teplow, D.B., Bowers, M.T.: Amyloid β-protein: monomer structure and early aggregation states of Aβ42 and its Pro19 alloform. J. Am. Chem. Soc. 127(7), 2075–2084 (2005)PubMedGoogle Scholar
  21. 21.
    Economou, N.J., Giammona, M.J., Do, T.D., Zheng, X., Teplow, D.B., Buratto, S.K., Bowers, M.T.: Amyloid β-protein assembly and Alzheimer’s disease: dodecamers of Aβ42, but not of Aβ40, seed fibril formation. J. Am. Chem. Soc. 138(6), 1772–1775 (2016)PubMedPubMedCentralGoogle Scholar
  22. 22.
    Leissring, M.A., Murphy, M.P., Mead, T.R., Akbari, Y., Sugarman, M.C., Jannatipour, M., Anliker, B., Müller, U., Saftig, P., De Strooper, B., Wolfe, M.S., Golde, T.E., LaFerla, F.M.: A physiologic signaling role for the γ-secretase-derived intracellular fragment of APP. Proc. Natl. Acad. Sci. 99(7), 4697 (2002)PubMedGoogle Scholar
  23. 23.
    Wong, G.T., Manfra, D., Poulet, F.M., Zhang, Q., Josien, H., Bara, T., Engstrom, L., Pinzon-Ortiz, M., Fine, J.S., Lee, H.-J.J., Zhang, L., Higgins, G.A., Parker, E.M.: Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem. 279(13), 12876–12882 (2004)PubMedGoogle Scholar
  24. 24.
    Milano, J., McKay, J., Dagenais, C., Foster-Brown, L., Pognan, F., Gadient, R., Jacobs, R.T., Zacco, A., Greenberg, B., Ciaccio, P.J.: Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 82(1), 341–358 (2004)PubMedGoogle Scholar
  25. 25.
    Ghosh, A.K., Osswald, H.L.: BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev. 43(19), 6765–6813 (2014)PubMedPubMedCentralGoogle Scholar
  26. 26.
    Wilcock, D.M., Rojiani, A., Rosenthal, A., Subbarao, S., Freeman, M.J., Gordon, M.N., Morgan, D.: Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J. Neuroinflammation. 1, 24–24 (2004)PubMedPubMedCentralGoogle Scholar
  27. 27.
    Pfeifer, M., Boncristiano, S., Bondolfi, L., Stalder, A., Deller, T., Staufenbiel, M., Mathews, P.M., Jucker, M.: Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science (New York, N.Y.). 298(5597), 1379 (2002)Google Scholar
  28. 28.
    Ferrer, I., Rovira, M.B., Guerra, M.L.S., Rey, M.J., Costa-Jussá, F.: Neuropathology and pathogenesis of encephalitis following amyloid β immunization in Alzheimer’s disease. Brain Pathol. 14, 11–20 (2004)PubMedGoogle Scholar
  29. 29.
    Gilman, S., Koller, M., Black, R.S., Jenkins, L., Griffith, S.G., Fox, N.C., Eisner, L., Kirby, L., Rovira, M.B., Forette, F., Orgogozo, J.M.: Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 64(9), 1553 (2005)PubMedGoogle Scholar
  30. 30.
    Puzzo, D., Privitera, L., Leznik, E., Fà, M., Staniszewski, A., Palmeri, A., Arancio, O.: Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 28(53), 14537 (2008)PubMedPubMedCentralGoogle Scholar
  31. 31.
    Giuffrida, M.L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., Molinaro, G., Pappalardo, G., Messina, A., Palmigiano, A., Garozzo, D., Nicoletti, F., Rizzarelli, E., Copani, A.: β-Amyloid monomers are neuroprotective. J. Neurosci. 29(34), 10582 (2009)PubMedGoogle Scholar
  32. 32.
    Zou, K., Gong, J.-S., Yanagisawa, K., Michikawa, M.: A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci. 22(12), 4833 (2002)PubMedGoogle Scholar
  33. 33.
    Kim, J., Onstead, L., Randle, S., Price, R., Smithson, L., Zwizinski, C., Dickson, D.W., Golde, T., McGowan, E.: Aβ40 inhibits amyloid deposition in vivo. J. Neurosci. 27(3), 627–633 (2007)PubMedGoogle Scholar
  34. 34.
    Härd, T., Lendel, C.: Inhibition of amyloid formation. J. Mol. Biol. 421(4), 441–465 (2012)PubMedGoogle Scholar
  35. 35.
    Scherzer-Attali, R., Farfara, D., Cooper, I., Levin, A., Ben-Romano, T., Trudler, D., Vientrov, M., Shaltiel-Karyo, R., Shalev, D.E., Segev-Amzaleg, N., Gazit, E., Segal, D., Frenkel, D.: Naphthoquinone-tyrptophan reduces neurotoxic Aβ*56 levels and improves cognition in Alzheimer’s disease animal model. Neurobiol. Dis. 46(3), 663–672 (2012)PubMedGoogle Scholar
  36. 36.
    Ryan, T.M., Roberts, B.R., McColl, G., Hare, D.J., Doble, P.A., Li, Q.-X., Lind, M., Roberts, A.M., Mertens, H.D.T., Kirby, N., Pham, C.L.L., Hinds, M.G., Adlard, P.A., Barnham, K.J., Curtain, C.C., Masters, C.L.: Stabilization of nontoxic Aβ-oligomers: insights into the mechanism of action of hydroxyquinolines in Alzheimer’s disease. J. Neurosci. 35(7), 2871 (2015)PubMedGoogle Scholar
  37. 37.
    Zheng, X., Liu, D., Klärner, F.-G., Schrader, T., Bitan, G., Bowers, M.T.: Amyloid β-protein assembly: the effect of molecular tweezers CLR01 and CLR03. J. Phys. Chem. B. 119(14), 4831–4841 (2015)PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee, S., Zheng, X., Krishnamoorthy, J., Savelieff, M.G., Park, H.M., Brender, J.R., Kim, J.H., Derrick, J.S., Kochi, A., Lee, H.J., Kim, C., Ramamoorthy, A., Bowers, M.T., Lim, M.H.: Rational design of a structural framework with potential use to develop chemical reagents that target and modulate multiple facets of Alzheimer’s disease. J. Am. Chem. Soc. 136(1), 299–310 (2014)PubMedGoogle Scholar
  39. 39.
    Zheng, X., Gessel, M.M., Wisniewski, M.L., Viswanathan, K., Wright, D.L., Bahr, B.A., Bowers, M.T.: Z-Phe-ala-diazomethylketone (PADK) disrupts and remodels early oligomer states of the Alzheimer disease Aβ42 protein. J. Biol. Chem. 287(9), 6084–6088 (2012)PubMedPubMedCentralGoogle Scholar
  40. 40.
    LeVine, H., Ding, Q., Walker, J.A., Voss, R.S., Augelli-Szafran, C.E.: Clioquinol and other hydroxyquinoline derivatives inhibit Aβ(1–42) oligomer assembly. Neurosci. Lett. 465(1), 99–103 (2009)PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rammes, G., Gravius, A., Ruitenberg, M., Wegener, N., Chambon, C., Sroka-Saidi, K., Jeggo, R., Staniaszek, L., Spanswick, D., O'Hare, E., Palmer, P., Kim, E.-M., Bywalez, W., Egger, V., Parsons, C.G.: MRZ-99030—a novel modulator of Aβ aggregation: II—reversal of Aβ oligomer-induced deficits in long-term potentiation (LTP) and cognitive performance in rats and mice. Neuropharmacology. 92, 170–182 (2015)PubMedGoogle Scholar
  42. 42.
    Arai, T., Sasaki, D., Araya, T., Sato, T., Sohma, Y., Kanai, M.: A cyclic KLVFF-derived peptide aggregation inhibitor induces the formation of less-toxic off-pathway amyloid-β oligomers. Chembiochem. 15(17), 2577–2583 (2014)PubMedGoogle Scholar
  43. 43.
    Hayden, E.Y., Yamin, G., Beroukhim, S., Chen, B., Kibalchenko, M., Jiang, L., Ho, L., Wang, J., Pasinetti, G.M., Teplow, D.B.: Inhibiting amyloid β-protein assembly: size–activity relationships among grape seed-derived polyphenols. J. Neurochem. 135(2), 416–430 (2015)PubMedPubMedCentralGoogle Scholar
  44. 44.
    Taylor, M., Moore, S., Mayes, J., Parkin, E., Beeg, M., Canovi, M., Gobbi, M., Mann, D.M.A., Allsop, D.: Development of a proteolytically stable retro-inverso peptide inhibitor of β-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry. 49(15), 3261–3272 (2010)PubMedGoogle Scholar
  45. 45.
    Yamin, G., Ruchala, P., Teplow, D.B.: A peptide hairpin inhibitor of amyloid β-protein oligomerization and fibrillogenesis. Biochemistry. 48(48), 11329–11331 (2009)PubMedGoogle Scholar
  46. 46.
    Yang, F., Lim, G.P., Begum, A.N., Ubeda, O.J., Simmons, M.R., Ambegaokar, S.S., Chen, P.P., Kayed, R., Glabe, C.G., Frautschy, S.A., Cole, G.M.: Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280(7), 5892–5901 (2005)PubMedGoogle Scholar
  47. 47.
    Ranu, S., Singh, A.K.: Novel method for pharmacophore analysis by examining the joint pharmacophore space. J. Chem. Inf. Model. 51(5), 1106–1121 (2011)PubMedGoogle Scholar
  48. 48.
    Lang, C.A., Ray, S.S., Liu, M., Singh, A.K., Cuny, G.D.: Discovery of LRRK2 inhibitors using sequential in silico joint pharmacophore space (JPS) and ensemble docking. Bioorg. Med. Chem. Lett. 25(13), 2713–2719 (2015)PubMedGoogle Scholar
  49. 49.
    Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A., Teplow, D.B.: On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. U. S. A. 93(3), 1125–1129 (1996)PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wyttenbach, T., Kemper, P.R., Bowers, M.T.: Design of a new electrospray ion mobility mass spectrometer. Int. J. Mass Spectrom. 212(1), 13–23 (2001)Google Scholar
  51. 51.
    Mason, E.A., McDaniel, E.W.: Transport Properties of Ions in Gases. Wiley, New York (1988)Google Scholar
  52. 52.
    Irwin, J.J., Shoichet, B.K.: ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45(1), 177–182 (2005)PubMedPubMedCentralGoogle Scholar
  53. 53.
    Izzo, N.J., Staniszewski, A., To, L., Fa, M., Teich, A.F., Saeed, F., Wostein, H., Walko 3rd, T., Vaswani, A., Wardius, M., Syed, Z., Ravenscroft, J., Mozzoni, K., Silky, C., Rehak, C., Yurko, R., Finn, P., Look, G., Rishton, G., Safferstein, H., Miller, M., Johanson, C., Stopa, E., Windisch, M., Hutter-Paier, B., Shamloo, M., Arancio, O., LeVine 3rd, H., Catalano, S.M.: Alzheimer’s therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits. PLoS One. 9(11), e111898 (2014)PubMedPubMedCentralGoogle Scholar
  54. 54.
    Izzo, N.J., Xu, J., Zeng, C., Kirk, M.J., Mozzoni, K., Silky, C., Rehak, C., Yurko, R., Look, G., Rishton, G., Safferstein, H., Cruchaga, C., Goate, A., Cahill, M.A., Arancio, O., Mach, R.H., Craven, R., Head, E., LeVine 3rd, H., Spires-Jones, T.L., Catalano, S.M.: Alzheimer’s therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PLoS One. 9(11), e111899 (2014)PubMedPubMedCentralGoogle Scholar
  55. 55.
    Zheng, X., Wu, C., Liu, D., Li, H., Bitan, G., Shea, J.-E., Bowers, M.T.: Mechanism of C-terminal fragments of amyloid β-protein as Aβ inhibitors: do C-terminal interactions play a key role in their inhibitory activity? J. Phys. Chem. B. 120(8), 1615–1623 (2016)PubMedGoogle Scholar
  56. 56.
    de Almeida, N.E.C., Do, T.D., LaPointe, N.E., Tro, M., Feinstein, S.C., Shea, J.E., Bowers, M.T.: 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose binds to the N-terminal metal binding region to inhibit amyloid β-protein oligomer and fibril formation. Int. J. Mass Spectrom. 420, 24–34 (2017)PubMedGoogle Scholar
  57. 57.
    Mastrangelo, I.A., Ahmed, M., Sato, T., Liu, W., Wang, C., Hough, P., Smith, S.O.: High-resolution atomic force microscopy of soluble Aβ42 oligomers. J. Mol. Biol. 358(1), 106–119 (2006)PubMedGoogle Scholar
  58. 58.
    Kim, J.M., Jung, H.S., Park, J.W., Lee, H.Y., Kawai, T.: AFM phase lag mapping for protein–DNA oligonucleotide complexes. Anal. Chim. Acta. 525(2), 151–157 (2004)Google Scholar
  59. 59.
    Round, A.N., Miles, M.J.: Exploring the consequences of attractive and repulsive interaction regimes in tapping mode atomic force microscopy of DNA. Nanotechnology. 15(4), S176 (2004)Google Scholar
  60. 60.
    García, R., Magerle, R., Perez, R.: Nanoscale compositional mapping with gentle forces. Nat. Mater. 6, 405 (2007)PubMedGoogle Scholar
  61. 61.
    Gazit, E.: A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J. 16(1), 77–83 (2002)PubMedGoogle Scholar
  62. 62.
    Marshall, K.E., Morris, K.L., Charlton, D., O’Reilly, N., Lewis, L., Walden, H., Serpell, L.C.: Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability. Biochemistry. 50(12), 2061–2071 (2011)PubMedGoogle Scholar
  63. 63.
    Bleiholder, C., Do, T.D., Wu, C., Economou, N.J., Bernstein, S.S., Buratto, S.K., Shea, J.-E., Bowers, M.T.: Ion mobility spectrometry reveals the mechanism of amyloid formation of Aβ(25–35) and its modulation by inhibitors at the molecular level: epigallocatechin gallate and scyllo-inositol. J. Am. Chem. Soc. 135(45), 16926–16937 (2013)PubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Matthew A. Downey
    • 1
  • Maxwell J. Giammona
    • 1
  • Christian A. Lang
    • 2
  • Steven K. Buratto
    • 1
  • Ambuj Singh
    • 2
    • 3
  • Michael T. Bowers
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Acelot, Inc.Santa BarbaraUSA
  3. 3.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations