Experimental Observation of the Effects of Translational and Rotational Electrode Misalignment on a Planar Linear Ion Trap Mass Spectrometer

  • Yuan Tian
  • Trevor K. Decker
  • Joshua S. McClellan
  • Qinghao Wu
  • Abraham De la Cruz
  • Aaron R. Hawkins
  • Daniel E. Austin
Research Article

Abstract

The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed.

Graphical Abstract

Keywords

Linear ion trap (LIT) Geometry deviation Displacement Misalignment Degrees of freedom Mass resolution 

References

  1. 1.
    Barreira, L.M.F., Parshintsev, J., Karkkainen, N., Hartonen, K., Jussila, M., Kajos, M., Kulmala, M., Riekkola, M.L.: Field measurements of biogenic volatile organic compounds in the atmosphere by dynamic solid-phase microextraction and portable gas chromatography-mass spectrometry. Atmos. Environ. 115, 214–222 (2015)CrossRefGoogle Scholar
  2. 2.
    Diaz, J.A., Pieri, D., Arkin, C.R., Gore, E., Griffin, T.P., Fladeland, M., Bland, G., Soto, C., Madrigal, Y., Castillo, D., Rojas, E., Achi, S.: Utilization of in situ airborne MS-based instrumentation for the study of gaseous emissions at active volcanoes. Int. J. Mass Spectrom. 295, 105–112 (2010)CrossRefGoogle Scholar
  3. 3.
    Eckenrode, B.A.: Environmental and forensic applications of field-portable GC-MS: an overview. J. Am. Soc. Mass Spectrom. 12, 683–693 (2001)CrossRefGoogle Scholar
  4. 4.
    Riedo, A., Bieler, A., Neuland, M., Tulej, M., Wurz, P.: Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations in planetary space research. J. Mass Spectrom. 48, 1–15 (2013)CrossRefGoogle Scholar
  5. 5.
    Syage, J.A., Hanning-Lee, M.A., Hanold, K.A.: A man-portable, photoionization time-of-flight mass spectrometer. Field Anal. Chem. Technol. 4, 204–215 (2000)CrossRefGoogle Scholar
  6. 6.
    Gao, W., Tan, G., Hong, Y., Li, M., Nian, H., Guo, C., Huang, Z., Fu, Z., Dong, J., Xu, X., Cheng, P., Zhou, Z.: Development of portable single photon ionization time-of-flight mass spectrometer combined with membrane inlet. Int. J. Mass Spectrom. 334, 8–12 (2013)CrossRefGoogle Scholar
  7. 7.
    Huang, Z., Tan, G., Zhou, Z., Chen, L., Cheng, L., Jin, D., Tan, X., Xie, C., Li, L., Dong, J., Fu, Z., Cheng, P., Gao, W.: Development of a miniature time-of-flight mass/charge spectrometer for ion beam source analyzing. Int. J. Mass Spectrom. 379, 60–64 (2015)CrossRefGoogle Scholar
  8. 8.
    Getty, S.A., Brinckerhoff, W.B., Cornish, T., Ecelberger, S., Floyd, M.: Compact two-step laser time-of-flight mass spectrometer for in situ analyses of aromatic organics on planetary missions. Rapid Commun. Mass Spectrom. 26, 2786–2790 (2012)CrossRefGoogle Scholar
  9. 9.
    Li, D., Guo, M., Xiao, Y., Zhao, Y., Wang, L.: Development of a miniature magnetic sector mass spectrometer. Vacuum. 85, 1170–1173 (2011)CrossRefGoogle Scholar
  10. 10.
    Cheung, K., Velasquez-Garcia, L.F., Akinwande, A.I.: Chip-scale quadrupole mass filters for portable mass spectrometry. J. Microelectromech. Syst. 19, 469–483 (2010)CrossRefGoogle Scholar
  11. 11.
    Holkeboer, D.H., Karandy, T.L., Currier, F.C., Frees, L.C., Ellefson, R.E.: Miniature quadrupole residual gas analyzer for process monitoring at milliTorr pressures. J. Vac. Sci. Technol. A. 16, 1157–1162 (1998)CrossRefGoogle Scholar
  12. 12.
    Taylor, S., Tindall, R.F., Syms, R.R.A.: Silicon based quadrupole mass spectrometry using microelectromechanical systems. J. Vac. Sci. Technol. B. 19, 557–562 (2001)CrossRefGoogle Scholar
  13. 13.
    Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002)CrossRefGoogle Scholar
  14. 14.
    Ding, L., Sudakov, M., Kumashiro, S.: A simulation study of the digital ion trap mass spectrometry. Int. J. Mass Spectrom. 221, 117–138 (2002)CrossRefGoogle Scholar
  15. 15.
    Ouyang, Z., Wu, G., Song, Y., Li, H., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)CrossRefGoogle Scholar
  16. 16.
    Badman, E.R., Johnson, R.C., Plass, W.R., Cooks, R.G.: A miniature cylindrical quadrupole ion trap: simulation and experiment. Anal. Chem. 70, 4896–4901 (1998)CrossRefGoogle Scholar
  17. 17.
    Lammert, S.A., Plass, W.R., Thompson, C.V., Wise, M.B.: Design, optimization and initial performance of a toroidal rf ion trap mass spectrometer. Int. J. Mass Spectrom. 212, 25–40 (2001)CrossRefGoogle Scholar
  18. 18.
    Badman, E.R., Cooks, R.G.: Special feature: perspective—miniature mass analyzers. J. Mass Spectrom. 35, 659–671 (2000)CrossRefGoogle Scholar
  19. 19.
    Li, G., Li, D.T., Cheng, Y.J., Pei, X.Q., Zhang, H.Z., Wang, Y.J., Sun, J., Dong, M.: Development of a low power miniature linear ion trap mass spectrometer with extended mass range. Rev. Sci. Instrum. 88, 7 (2017)Google Scholar
  20. 20.
    Hendricks, P.I., Dalgleish, J.K., Shelley, J.T., Kirleis, M.A., McNicholas, M.T., Li, L.F., Chen, T.C., Chen, C.H., Duncan, J.S., Boudreau, F., Noll, R.J., Denton, J.P., Roach, T.A., Ouyang, Z., Cooks, R.G.: Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Anal. Chem. 86, 2900–2908 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhai, Y.B., Feng, Y., Wei, Y.Z., Wang, Y.Z., Xu, W.: Development of a miniature mass spectrometer with continuous atmospheric pressure interface. Analyst. 140, 3406–3414 (2015)CrossRefGoogle Scholar
  22. 22.
    Contreras, J.A., Murray, J.A., Tolley, S.E., Oliphant, J.L., Tolley, H.D., Lammert, S.A., Lee, E.D., Later, D.W., Lee, M.L.: Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. Mass Spectrom. 19, 1425–1434 (2008)CrossRefGoogle Scholar
  23. 23.
    Chen, C.H., Chen, T.C., Zhou, X., Kline-Schoder, R., Sorensen, P., Cooks, G.R., Ouyang, Z.: Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems. J. Am. Soc. Mass Spectrom. 26, 240–247 (2015)CrossRefGoogle Scholar
  24. 24.
    Shortt, B.J., Darrach, M.R., Holland, P.M., Chutjian, A.: Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer. J. Mass Spectrom. 40, 36–42 (2005)CrossRefGoogle Scholar
  25. 25.
    Chaudhary, A., van Amerom, F.H.W., Short, R.T.: Experimental evaluation of micro-ion trap mass spectrometer geometries. Int. J. Mass Spectrom. 371, 17–27 (2014)CrossRefGoogle Scholar
  26. 26.
    Chaudhary, A., van Amerom, F., Short, R., Bhansali, S.: Fabrication and testing of a miniature cylindrical ion trap mass spectrometer constructed from low temperature co-fired ceramics. Int. J. Mass Spectrom. 251, 32–39 (2006)CrossRefGoogle Scholar
  27. 27.
    Li, X., Jiang, G., Luo, C., Xu, F., Wang, Y., Ding, L., Ding, C.: Ion trap array mass analyzer: structure and performance. Anal. Chem. 81, 4840–4846 (2009)CrossRefGoogle Scholar
  28. 28.
    Wilpers, G., See, P., Gill, P., Sinclair, A.G.: A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotechnol. 7, 572–576 (2012)CrossRefGoogle Scholar
  29. 29.
    Chu, Y., Xiao, Y., Ling, X., Ding, C.: Analytical performance of printed circuit board ion trap array mass analyzer with electrospray ionization. Fenxi Huaxue. 41, 152–158 (2013)Google Scholar
  30. 30.
    Xu, W., Li, L., Zhou, X., Ouyang, Z.: Ion sponge: a 3-dimentional array of quadrupole ion traps for trapping and mass-selectively processing ions in gas phase. Anal. Chem. 86, 4102–4109 (2014)CrossRefGoogle Scholar
  31. 31.
    Tian, Y., Higgs, J., Li, A., Barney, B., Austin, D.E.: How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J. Mass Spectrom. 49, 233–240 (2014)CrossRefGoogle Scholar
  32. 32.
    Xu, W., Chappell, W.J., Cooks, R.G., Ouyang, Z.: Characterization of electrode surface roughness and its impact on ion trap mass analysis. J. Mass Spectrom. 44, 353–360 (2009)CrossRefGoogle Scholar
  33. 33.
    Ono, T., Sim, D.Y., Esashi, M.: Micro-discharge and electric breakdown in a micro-gap. J. Micromech. Microeng. 10, 445–451 (2000)CrossRefGoogle Scholar
  34. 34.
    March, R.E., Todd, J.F.J. (eds.): Practical aspects of trapped ion mass spectrometry, volume IV: Theory and instrumentation, pp. 373–400. CRC Press, Boca Raton (2010)Google Scholar
  35. 35.
    Badman, E.R., Cooks, R.G.: A parallel miniature cylindrical ion trap Array. Anal. Chem. 72, 3291–3297 (2000)CrossRefGoogle Scholar
  36. 36.
    Badman, E.R., Cooks, R.G.: Cylindrical ion trap array with mass selection by variation in trap dimensions. Anal. Chem. 72, 5079–5086 (2000)CrossRefGoogle Scholar
  37. 37.
    Misharin, A.S., Laughlin, B.C., Vilkov, A., Takats, Z., Ouyang, Z., Cooks, R.G.: High-throughput mass spectrometer using atmospheric pressure ionization and a cylindrical ion trap array. Anal. Chem. 77, 459–470 (2005)CrossRefGoogle Scholar
  38. 38.
    Tabert, A.M., Greip-Raming, J., Guymon, A.J., Cooks, R.G.: High-throughput miniature cylindrical ion trap array mass spectrometer. Anal. Chem. 75, 5656–5664 (2003)CrossRefGoogle Scholar
  39. 39.
    Wang, L., Xu, F., Ding, C.: Performance and geometry optimization of the ceramic-based rectilinear ion traps. Rapid Commun. Mass Spectrom. 26, 2068–2074 (2012)CrossRefGoogle Scholar
  40. 40.
    Lammert, S.A., Rockwood, A.A., Wang, M., Lee, M.L., Lee, E.D., Tolley, S.E., Oliphant, J.R., Jones, J.L., Waite, R.W.: Miniature toroidal radio frequency ion trap mass analyzer. J. Am. Soc. Mass Spectrom. 17, 916–922 (2006)CrossRefGoogle Scholar
  41. 41.
    Taylor, N., Austin, D.E.: A simplified toroidal ion trap mass analyzer. Int. J. Mass Spectrom. 321, 25–32 (2012)CrossRefGoogle Scholar
  42. 42.
    Ouyang, Z., Badman, E.R., Cooks, R.G.: Characterization of a serial array of miniature cylindrical ion trap mass analyzers. Rapid Commun. Mass Spectrom. 13, 2444–2449 (1999)CrossRefGoogle Scholar
  43. 43.
    Maas, J.D., Hendricks, P.I., Ouyang, Z., Cooks, R.G., Chappell, W.J.: Miniature monolithic rectilinear ion trap arrays by stereolithography on printed circuit board. J. Microelectromech. Syst. 19, 951–960 (2010)CrossRefGoogle Scholar
  44. 44.
    Kothari, S., Song, Q.Y., Xia, Y., Fico, M., Taylor, D., Amy, J.W., Stafford, G., Cooks, R.G.: Multiplexed four-channel rectilinear ion trap mass spectrometer. Anal. Chem. 81, 1570–1579 (2009)CrossRefGoogle Scholar
  45. 45.
    Geear, M., Syms, R.R.A., Wright, S., Holmes, A.S.: Monolithic MEMS quadrupole mass spectrometers by deep silicon etching. J. Microelectromech. Syst. 14, 1156–1166 (2005)CrossRefGoogle Scholar
  46. 46.
    Velasquez-Garcia, L.F., Cheung, K., Akinwande, A.I.: An application of 3-D MEMS packaging: out-of-plane quadrupole mass filters. J. Microelectromech. Syst. 17, 1430–1438 (2008)CrossRefGoogle Scholar
  47. 47.
    Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo ion trap mass spectrometer. Anal. Chem. 79, 2927–2932 (2007)CrossRefGoogle Scholar
  48. 48.
    Zhang, Z.P., Peng, Y., Hansen, B.J., Miller, I.W., Wang, M., Lee, M.L., Hawkins, A.R., Austin, D.E.: Paul trap mass analyzer consisting of opposing microfabricated electrode plates. Anal. Chem. 81, 5241–5248 (2009)CrossRefGoogle Scholar
  49. 49.
    Peng, Y., Hansen, B.J., Quist, H., Zhang, Z.P., Wang, M., Hawkins, A.R., Austin, D.E.: Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions. Anal. Chem. 83, 5578–5584 (2011)CrossRefGoogle Scholar
  50. 50.
    Hansen, B.J., Niemi, R.J., Hawkins, A.R., Lammert, S.A., Austin, D.E.: A lithographically patterned discrete planar electrode linear ion trap mass spectrometer. J. Microelectromech. Syst. 22, 876–883 (2013)CrossRefGoogle Scholar
  51. 51.
    Li, A., Hansen, B.J., Powell, A.T., Hawkins, A.R., Austin, D.E.: Miniaturization of a planar-electrode linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 28, 1338–1344 (2014)CrossRefGoogle Scholar
  52. 52.
    Wang, Y., Zhang, X., Feng, Y., Shao, R., Xiong, X., Fang, X., Deng, Y., Xu, W.: Characterization of geometry deviation effects on ion trap mass analysis: a comparison study. Int. J. Mass Spectrom. 370, 125–131 (2014)CrossRefGoogle Scholar
  53. 53.
    Tian, Y., Decker, T.K., McClellan, J.S., Bennett, L., Li, A., De la Cruz, A., Andrews, D., Lammert, S.A., Hawkins, A.R., Austin, D.E.: Improved miniaturized linear ion trap mass spectrometer using lithographically patterned plates and tapered ejection slit. J. Am. Soc. Mass Spectrom. 29, 213–222 (2018)Google Scholar
  54. 54.
    Moxom, J., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Sample pressure effects in a micro ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 18, 721–723 (2004)CrossRefGoogle Scholar
  55. 55.
    Wu, Q., Tian, Y., Li, A., Austin, D.E.: Simulations of electrode misalignment effects in two-plate linear ion traps. Int. J. Mass Spectrom. 393, 52–57 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Yuan Tian
    • 1
    • 2
  • Trevor K. Decker
    • 3
  • Joshua S. McClellan
    • 3
  • Qinghao Wu
    • 1
  • Abraham De la Cruz
    • 1
  • Aaron R. Hawkins
    • 3
  • Daniel E. Austin
    • 1
  1. 1.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA
  2. 2.Department of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China
  3. 3.Department of Electrical and Computer EngineeringBrigham Young UniversityProvoUSA

Personalised recommendations