Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1781–1790 | Cite as

Spectroscopic Identification of the Carbyne Hydride Structure of the Dehydrogenation Product of Methane Activation by Osmium Cations

  • P. B. ArmentroutEmail author
  • Stach E. J. Kuijpers
  • Olga V. Lushchikova
  • Randy L. Hightower
  • Georgia C. Boles
  • Joost M. Bakker
Focus: Application of Photons and Radicals for MS: Research Article


The present work explores the structures of species formed by dehydrogenation of methane (CH4) and perdeuterated methane (CD4) by the 5d transition metal cation osmium (Os+). Using infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT), the structures of the [Os,C,2H]+ and [Os,C,2D]+ products are explored. This study complements previous work on the related species formed by dehydrogenation of methane by four other 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Osmium cations are formed in a laser ablation source, react with methane pulsed into a reaction channel downstream, and the resulting products spectroscopically characterized through photofragmentation using the Free-Electron Laser for IntraCavity Experiments (FELICE) in the 300–1800 cm−1 range. Photofragmentation was monitored by the loss of H2/D2. Comparison of the experimental spectra and DFT calculated spectra leads to identification of the ground state carbyne hydride, HOsCH+ (2A′) as the species formed, as previously postulated theoretically. Further, a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy, is achieved. A full rotational contour analysis explains the observed linewidths as well as the observation of doublet structures in several bands, consistent with previous observations for HIrCH+ (2A′).

Graphical Abstract


Spectroscopy Intracavity free electron laser Infrared multiple photon dissociation Rotational band structure 



The Center for High Performance Computing (CHPC) at the University of Utah is acknowledged for their generous allocation of computing time.

Funding Information

We gratefully acknowledge the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for support of the FELIX Laboratory and support for this project was provided by the National Science Foundation, Grant Nos. CHE-1664618 and OISE-1357887.

Supplementary material

13361_2018_1929_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1553 kb)


  1. 1.
    Bharadwaj, S.S., Schmidt, L.D.: Catalytic partial oxidation of natural-gas to syngas. Fuel Process. Technol. 42, 109–127 (1995)CrossRefGoogle Scholar
  2. 2.
    Lee, Y.J., Hong, S.I., Moon, D.J.: Studies on the steam and CO2 reforming of methane for GTL-FPSO applications. Catal. Today. 174, 31–36 (2011)CrossRefGoogle Scholar
  3. 3.
    Schwarz, H.: Chemistry with methane: concepts rather than recipes. Angew. Chem. Int. Ed. 50, 10096–10115 (2011)CrossRefGoogle Scholar
  4. 4.
    Roithová, J., Schröder, D.: Selective activation of alkanes by gas-phase metal ions. Chem. Rev. 110, 1170–1211 (2010)CrossRefPubMedGoogle Scholar
  5. 5.
    Allison, J.: The gas-phase chemistry of transition-metal ions with organic molecules. Prog. Inorg. Chem. 34, 627–676 (1986)Google Scholar
  6. 6.
    Squires, R.R.: Gas-phase transition-metal negative ion chemistry. Chem. Rev. 87, 623–646 (1987)CrossRefGoogle Scholar
  7. 7.
    Aristov, N., Armentrout, P.B.: Methane activation by V+: electronic and translational energy dependence. J. Phys. Chem. 91, 6178–6188 (1987)CrossRefGoogle Scholar
  8. 8.
    Sunderlin, L.S., Armentrout, P.B.: Methane activation by Ti+: electronic and translational energy dependence. J. Phys. Chem. 92, 1209–1219 (1988)CrossRefGoogle Scholar
  9. 9.
    Schultz, R.H., Elkind, J.L., Armentrout, P.B.: Electronic effects in C-H and C-C bond activation: state-specific reactions of Fe+(6D, 4F) with methane, ethane, and propane. J. Am. Chem. Soc. 110, 411–423 (1988)CrossRefGoogle Scholar
  10. 10.
    Georgiadis, R., Armentrout, P.B.: Translational and electronic energy dependence of chromium ion reactions with methane. J. Phys. Chem. 92, 7067–7074 (1988)CrossRefGoogle Scholar
  11. 11.
    Sunderlin, L.S., Armentrout, P.B.: Periodic trends in chemical reactivity: reactions of Sc+, Y+, La+, and Lu+ with methane and ethane. J. Am. Chem. Soc. 111, 3845–3855 (1989)CrossRefGoogle Scholar
  12. 12.
    Russell, D.H.: Gas Phase Inorganic Chemistry. Plenum, New York (1989)CrossRefGoogle Scholar
  13. 13.
    Eller, K., Schwarz, H.: Organometallic chemistry in the gas phase. Chem. Rev. 91, 1121–1177 (1991)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.-M., Armentrout, P.B.: Activation of methane by gas-phase Rh+. J. Phys. Chem. 99, 10775–10779 (1995)CrossRefGoogle Scholar
  15. 15.
    Armentrout, P.B., Kickel, B.L.: Gas-phase thermochemistry of transition metal ligand systems: reassessment of values and periodic trends. In: Freiser, B.S. (ed.) Organometallic Ion Chemistry, pp. 1–45. Kluwer, Dordrecht (1996)Google Scholar
  16. 16.
    Haynes, C.L., Chen, Y.-M., Armentrout, P.B.: The potential energy surface for activation of methane by Co+: an experimental study. J. Phys. Chem. 99, 9110–9117 (1995)CrossRefGoogle Scholar
  17. 17.
    Haynes, C.L., Chen, Y.-M., Armentrout, P.B.: The reaction of FeCH2 + + D2: probing the [FeCH4]+ potential energy surface. J. Phys. Chem. 100, 111–119 (1996)CrossRefGoogle Scholar
  18. 18.
    Chen, Y.-M., Sievers, M.R., Armentrout, P.B.: Activation of CH4, C2H6, C3H8, and c-C3H6 by gas-phase Pd+ and the thermochemistry of Pd-ligand complexes. Int. J. Mass Spectrom. Ion Process. 167/168, 195–212 (1997)CrossRefGoogle Scholar
  19. 19.
    Armentrout, P.B.: Gas phase organometallic chemistry. In: Brown, J.M., Hofmann, P. (eds.) Topics in Organometallic Chemistry, vol. 4, pp. 1–45. Springer-Verlag, Berlin (1999)Google Scholar
  20. 20.
    Sievers, M.R., Chen, Y.-M., Haynes, C.L., Armentrout, P.B.: Activation of CH4, C2H6, and C3H8 by gas-phase Nb+ and the thermochemistry of Nb-ligand complexes. Int. J. Mass Spectrom. 195/196, 149–170 (2000)CrossRefGoogle Scholar
  21. 21.
    Armentrout, P.B., Sievers, M.R.: Activation of CH4 by gas-phase Zr+ and the thermochemistry of Zr ligand complexes. J. Phys. Chem. A. 107, 4396–4406 (2003)CrossRefGoogle Scholar
  22. 22.
    Liu, F., Zhang, X.-G., Armentrout, P.B.: Activation of CH4 by gas-phase Ni+ and the thermochemistry of Ni ligand complexes. Phys. Chem. Chem. Phys. 7, 1054–1064 (2005)CrossRefPubMedGoogle Scholar
  23. 23.
    Armentrout, P.B.: Activation of CH4 by gas-phase Mo+ and the thermochemistry of Mo-ligand complexes. J. Phys. Chem. A. 110, 8327–8338 (2006)CrossRefPubMedGoogle Scholar
  24. 24.
    Shayesteh, A., Lavrov, V.V., Koyanagi, G.K., Bohme, D.K.: Reactions of atomic cations with methane: gas phase room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A. 113, 5602–5611 (2009)CrossRefPubMedGoogle Scholar
  25. 25.
    Irikura, K.K., Beauchamp, J.L.: Osmium tetroxide and its fragment ions in the gas phase: reactivity with hydrocarbons and small molecules. J. Am. Chem. Soc. 111, 75–85 (1989)CrossRefGoogle Scholar
  26. 26.
    Buckner, S.W., MacMahon, T.J., Byrd, G.D., Freiser, B.S.: Gas-phase reactions of Nb+ and Ta+ with alkanes and alkenes. C-H bond activation and ligand-coupling mechanisms. Inorg. Chem. 28, 3511–3518 (1989)CrossRefGoogle Scholar
  27. 27.
    Irikura, K.K., Beauchamp, J.L.: Electronic structure considerations for methane activation by third-row transition-metal ions. J. Phys. Chem. 95, 8344–8351 (1991)CrossRefGoogle Scholar
  28. 28.
    Irikura, K.K., Beauchamp, J.L.: Methane oligomerization in the gas phase by third-row transition-metal ions. J. Am. Chem. Soc. 113, 2769–2770 (1991)CrossRefGoogle Scholar
  29. 29.
    Zhang, X.-G., Liyanage, R., Armentrout, P.B.: The potential energy surface for activation of methane by Pt+: a detailed guided-ion beam study. J. Am. Chem. Soc. 123, 5563–5575 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    Armentrout, P.B., Shin, S., Liyanage, R.: Guided-ion beam and theoretical study of the potential energy surface for activation of methane by W+. J. Phys. Chem. A. 110, 1242–1260 (2006)CrossRefPubMedGoogle Scholar
  31. 31.
    Li, F.-X., Zhang, X.-G., Armentrout, P.B.: The most reactive third-row transition metal: guided ion beam and theoretical studies of the activation of methane by Ir+. Int. J. Mass Spectrom. 255/256, 279–300 (2006)CrossRefGoogle Scholar
  32. 32.
    Parke, L.G., Hinton, C.S., Armentrout, P.B.: Experimental and theoretical studies of the activation of methane by Ta+. J. Phys. Chem. C. 111, 17773–17787 (2007)CrossRefGoogle Scholar
  33. 33.
    Armentrout, P.B., Parke, L., Hinton, C., Citir, M.: Activation of methane by Os+: guided ion beam and theoretical studies. ChemPlusChem. 78, 1157–1173 (2013)CrossRefGoogle Scholar
  34. 34.
    Armentrout, P.B.: Methane activation by 5d transition metals: energetics, mechanisms, and periodic trends. Chem. Eur. J. 23, 10–18 (2017)CrossRefPubMedGoogle Scholar
  35. 35.
    Armentrout, M.M., Li, F.-X., Armentrout, P.B.: Is spin conserved in heavy metal systems? Experimental and theoretical studies of the reaction of Re+ with methane. J. Phys. Chem. A. 108, 9660–9672 (2004)CrossRefGoogle Scholar
  36. 36.
    Parke, L.G., Hinton, C.S., Armentrout, P.B.: Why is hafnium so unreactive? Experimental and theoretical studies of the reaction of Hf + with methane. Int. J. Mass Spectrom. 254, 168–182 (2006)CrossRefGoogle Scholar
  37. 37.
    Parke, L.G., Hinton, C.S., Armentrout, P.B.: Energetics and mechanisms of C-H bond activation by a doubly-charged metal ion: guided ion beam and theoretical studies of Ta2+ + CH4. J. Phys. Chem. A. 112, 10469–10480 (2008)CrossRefPubMedGoogle Scholar
  38. 38.
    Li, F.-X., Armentrout, P.B.: Activation of methane by gold cations: guided ion beam and theoretical studies. J. Chem. Phys. 125, 133114 (2006)CrossRefPubMedGoogle Scholar
  39. 39.
    Irikura, K.K., Goddard III, W.A.: Energetics of third-row transition metal methylidene ions MCH2 + (M = La, Hf, Ta, W, Re, Os, Ir, Pt, Au). J. Am. Chem. Soc. 116, 8733–8740 (1994)CrossRefGoogle Scholar
  40. 40.
    Simon, A., Lemaire, J., Boissel, P., Maître, P.: Competition between Agostic WCH2 + and HWCH+: a joint experimental and theoretical study. J. Chem. Phys. 115, 2510–2518 (2001)CrossRefGoogle Scholar
  41. 41.
    Schrock, R.R.: Alkylidene complexes of niobium and tantalum. Acc. Chem. Res. 12, 98–104 (1979)CrossRefGoogle Scholar
  42. 42.
    Goddard, R.J., Hoffmann, R., Jemmis, E.D.: Unusual metal-carbon-hydrogen angles, carbon-hydrogen bond activation, and -hydrogen abstraction in transition-metal carbene complexes. J. Am. Chem. Soc. 102, 7667–7676 (1980)CrossRefGoogle Scholar
  43. 43.
    Brookhart, M., Green, M.L.H.: Carbon-hydrogen–transition metal bonds. J. Organomet. Chem. 250, 395–408 (1983)CrossRefGoogle Scholar
  44. 44.
    Lapoutre, V.J.F., Redlich, B., van der Meer, A.F.G., Oomens, J., Bakker, J.M., Sweeney, A., Mookherjee, A., Armentrout, P.B.: Structures of the dehydrogenation products of methane activation by 5d transition metal cations. J. Phys. Chem. A. 117, 4115–4126 (2013)CrossRefPubMedGoogle Scholar
  45. 45.
    Owen, C.J., Boles, G.C., Chernyy, V., Bakker, J.M., Armentrout, P.B.: Structures of the dehydrogenation products of methane activation by 5d transition metal cations revisited: deuterium labeling and rotational contours. J. Chem. Phys. 148, 044307 (2018)CrossRefPubMedGoogle Scholar
  46. 46.
    Wheeler, O.W., Salem, M., Gao, A., Bakker, J.M., Armentrout, P.B.: Activation of C-H bonds in Pt+ + xCH4 reactions, where x = 1 – 4: identification of the platinum dimethyl cation. J. Phys. Chem. A. 120, 6216–6227 (2016)CrossRefPubMedGoogle Scholar
  47. 47.
    Letokhov, V.S., Ryabov, E.A., Tumanov, O.A.: Luminiscence of a molecular gas under the action of CO2 laser pulses. Sov. Phys. JETP. 36, 1069–1073 (1973)Google Scholar
  48. 48.
    Campbell, J.D., Hancock, G., Halpern, J.B., Welge, K.H.: Off resonant dissociation of NH3 to ground state fragments by pulsed CO2 laser radiation. Chem. Phys. Lett. 44, 404–410 (1976)CrossRefGoogle Scholar
  49. 49.
    Bakker, J.M., Lapoutre, V.J.F., Redlich, B., Oomens, J., Sartakov, B.G., Fielicke, A., von Helden, G., Meijer, G., van der Meer, A.F.G.: Intensity-resolved IR multiple photon ionization and fragmentation of C60. J. Chem. Phys. 132, 074305 (2010)CrossRefPubMedGoogle Scholar
  50. 50.
    Lehmann, K.K., Scoles, G., Pate, B.H.: Intramolecular dynamics from eigenstate-resolved infrared-spectra. Annu. Rev. Phys. Chem. 45, 241–274 (1994)CrossRefGoogle Scholar
  51. 51.
    Beil, A., Luckhaus, D., Quack, M., Stohner, J.: Intramolecular vibrational redistribution and unimolecular reaction: concepts and new results on the femtosecond dynamics and statistics in CHBrClF. Ber. Bunsenges. Phys. Chem. 101, 311–328 (1997)CrossRefGoogle Scholar
  52. 52.
    Brümmer, M., Kaposta, C., Santambrogio, G., Asmis, K.R.: Formation and photodepletion of cluster ion-messenger atom complexes in a cold ion trap: infrared spectroscopy of VO+, VO2 +, and VO3. J. Chem. Phys. 119, 12700–12703 (2003)CrossRefGoogle Scholar
  53. 53.
    Holthausen, M.C., Heinemann, C., Cornehl, H.H., Koch, W., Schwartz, H.: The performance of density-functional/Hartree-Fock hybrid methods: cationic transition-metal methyl complexes MCH3 +. J. Chem. Phys. 102, 4931 (1995)CrossRefGoogle Scholar
  54. 54.
    Zhang, G., Li, S., Jiang, Y.: Dehydrogenation of methane by gas-phase Os+: a density functional study. Organomet. 22, 3820–3830 (2003)CrossRefGoogle Scholar
  55. 55.
    Dietz, T.G., Duncan, M.A., Powers, D.E., Smalley, R.E.: Laser production of supersonic metal cluster beams. J. Chem. Phys. 74, 6511–6512 (1981)CrossRefGoogle Scholar
  56. 56.
    Haertelt, M., Lapoutre, V.J.F., Bakker, J.M., Redlich, B., Fielicke, A., Meijer, G.: Structure determination of anionic metal clusters via infrared resonance enhanced multiple photon electron detachment spectroscopy. J. Phys. Chem. Lett. 2, 1720–1724 (2011)CrossRefGoogle Scholar
  57. 57.
    Lemaire, J., Boissel, P., Heninger, M., Mauclaire, G., Bellec, G., Mestdagh, H., Le Caer, S., Ortega, J., Glotin, F., Maître, P.: Gas phase infrared spectroscopy of selectively prepared ions. Phys. Rev. Lett. 89, 273002 (2002)CrossRefPubMedGoogle Scholar
  58. 58.
    Bakker, J.M., Besson, T., Lemaire, J., Scuderi, D., Maître, P.: Gas-phase structure of a π-allyl-palladium complex: efficient infrared spectroscopy in a 7T Fourier transform mass spectrometer. J. Phys. Chem. A. 111, 13415–13424 (2007)CrossRefPubMedGoogle Scholar
  59. 59.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT (2016)Google Scholar
  60. 60.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  61. 61.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)CrossRefGoogle Scholar
  62. 62.
    Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H.: Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta. 77, 123–141 (1990)CrossRefGoogle Scholar
  63. 63.
    Kesharwani, M.K., Brauer, B., Martin, J.M.L.: Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J. Phys. Chem. A. 119, 1701–1714 (2015)CrossRefPubMedGoogle Scholar
  64. 64.
    Barone, V.: Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys. 122, 014108 (2005)CrossRefGoogle Scholar
  65. 65.
    Leo Meerts, W., Schmitt, M.: Application of genetic algorithms in automated assignments of high-resolution spectra. Int. Rev. Phys. Chem. 25, 353–406 (2006)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA
  2. 2.Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands

Personalised recommendations