Journal of The American Society for Mass Spectrometry

, Volume 29, Issue 9, pp 1768–1780 | Cite as

Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy

  • Naruaki Imaoka
  • Camille Houferak
  • Megan P. Murphy
  • Huong T. H. Nguyen
  • Andy Dang
  • František Tureček
Focus: Application of Photons and Radicals for MS: Research Article


Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-CH-CONH- type, initially formed by N−Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]-ETD fragments containing Asp, Asn, Glu, and Gln residues.

Graphical Abstract


Peptide cation radicals Electron transfer dissociation UV-vis action spectroscopy Ab initio calculations RRKM kinetics 



Support by the National Science Foundation Division of Chemistry (grants CHE-1359810, CHE-1661815, and CHE-1624430), and Klaus and Mary Ann Saegebarth Endowment are gratefully acknowledged.

Supplementary material

13361_2017_1871_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1606 kb)


  1. 1.
    Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA. 101, 9528–9533 (2004)CrossRefGoogle Scholar
  2. 2.
    Tureček, F., Julian, R.R.: Peptide radicals and cation radicals in the gas phase. Chem. Rev. 113, 6691–6733 (2013)CrossRefGoogle Scholar
  3. 3.
    Savitski, M.M., Kjeldsen, F., Nielsen, M.L., Zubarev, R.A.: Complementary sequence preferences of electron capture dissociation and vibrational excitation in fragmentation of polypeptide polycations. Angew. Chem. Int. Ed. Engl. 45, 5301–5303 (2006)CrossRefGoogle Scholar
  4. 4.
    Chalkley, R.J., Medzihradszky, K.F., Lynn, A.J., Baker, P.R., Burlingame, A.L.: Statistical analysis of peptide electron transfer dissociation fragmentation mass spectrometry. Anal. Chem. 82, 579–584 (2010)CrossRefGoogle Scholar
  5. 5.
    Li, W., Song, C., Bailey, D.J., Tseng, G.C., Coon, J.J., Wysocki, V.H.: Statistical analysis of electron transfer dissociation pairwise fragmentation patterns. Anal. Chem. 83, 9540–9545 (2011)CrossRefGoogle Scholar
  6. 6.
    Chu, I.K., Siu, C.-K., Lau, J.K.-C., Tang, W.K., Mu, X., Lai, C.K., Guo, X., Wang, X., Li, N., Yao, Z., Xia, Y., Kong, X., Oh, H.-B., Ryzhov, V., Tureček, F., Hopkinson, A.C., Siu, K.W.M.: Proposed nomenclature for peptide ion fragmentation. Int. J. Mass Spectrom. 390, 24–27 (2015)CrossRefGoogle Scholar
  7. 7.
    Sobczyk, M., Anusiewicz, I., Berdys-Kochanska, J., Sawicka, A., Skurski, P., Simons, J.J.: Coulomb-assisted dissociative electron attachment: application to a model peptide. J. Phys. Chem. A. 109, 250–258 (2005)CrossRefGoogle Scholar
  8. 8.
    Syrstad, E.A., Tureček, F.: Toward a general mechanism of electron-capture dissociation. J. Am. Soc. Mass Spectrom. 16, 208–224 (2005)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Tureček, F.: The arginine anomaly: arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations. J. Am. Chem. Soc. 128, 12520–12530 (2006)CrossRefGoogle Scholar
  10. 10.
    Syrstad, E.A., Stephens, D.D., Tureček, F.: Hydrogen atom adducts to the amide bond. Generation and energetics of amide radicals in the gas phase. J. Phys. Chem. A. 107, 115–126 (2003)CrossRefGoogle Scholar
  11. 11.
    Frison, G., Bull, A., van der Rest, G., Tureček, F., Besson, T., Lemaire, J., Maître, P., Chamot-Rooke, J.: Structure of ECD fragments from charge-tagged peptides probed by tunable IRMPD. J. Am. Chem. Soc. 130, 14916–14917 (2008)CrossRefGoogle Scholar
  12. 12.
    Shaffer, C.J., Martens, J., Marek, A., Oomens, J., Tureček, F.: Photoleucine survives backbone cleavage by electron transfer dissociation. A near-UV photodissociation and infrared multiphoton dissociation action spectroscopy study. J. Am. Soc. Mass Spectrom. 27, 1176–1185 (2016)CrossRefGoogle Scholar
  13. 13.
    Martens, J., Grzetic, J., Berden, G., Oomens, J.: Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy. Nat. Commun. 7, 11754 (2016)CrossRefGoogle Scholar
  14. 14.
    Nguyen, H.T.H., Tureček, F.: Near-UV photodissociation of tryptic peptide cation radicals. Scope and effects of amino acid residues and radical sites. J. Am. Soc. Mass Spectrom. 29, 1333–1344 (2017)CrossRefGoogle Scholar
  15. 15.
    Nguyen, H.T.H., Shaffer, C.J., Pepin, R., Tureček, F.: UV action spectroscopy of gas-phase peptide radicals. J. Phys. Chem. Lett. 6, 4722–4727 (2015)CrossRefGoogle Scholar
  16. 16.
    Nguyen, H.T.H., Andrikopoulos, P.C., Bím, D., Rulíšek, L., Dang, A., Tureček, F.: Radical reactions affecting polar groups in threonine peptide ions. J. Phys. Chem. B. 121, 6557–6569 (2017)CrossRefGoogle Scholar
  17. 17.
    Antoine, R., Dugourd, P.: Visible and ultraviolet spectroscopy of gas phase protein ions. Phys. Chem., Chem. Phys. 13, 16494–16509 (2011)CrossRefGoogle Scholar
  18. 18.
    Antoine, R., Dugourd, P.: UV-visible activation of biomolecular ions. (Laser Photodissociation and Spectroscopy of Mass-Separated Biomolecular Ions). Lecture Notes Chem. 83, 93–116 (2013)CrossRefGoogle Scholar
  19. 19.
    Bythell, B.J.: To jump or not to jump? Cα hydrogen atom transfer in post-cleavage radical-cation complexes. J. Phys. Chem. A. 117, 1189–1196 (2013)CrossRefGoogle Scholar
  20. 20.
    Pepin, R., Laszlo, K.J., Peng, B., Marek, A., Bush, M.F., Tureček, F.: Comprehensive analysis of Gly-Leu-Gly-Gly-Lys peptide dication structures and cation-radical dissociations following electron transfer: from electron attachment to backbone cleavage, ion-molecule complexes, and fragment separation. J. Phys. Chem. A. 118, 308–324 (2014)CrossRefGoogle Scholar
  21. 21.
    Bythell, B.J.: Hydrogen atom transfer in post-cleavage radical-cation complexes: short and steep versus long winding road. J. Phys. Chem. A. 118, 10797–10803 (2014)CrossRefGoogle Scholar
  22. 22.
    Nguyen, H.T.H., Shaffer, C.J., Ledvina, A., Coon, J.J., Tureček, F.: Serine effects on collision-induced dissociation and photodissociation of peptide cation radicals of the z+● type. Int. J. Mass Spectrom. 378, 20–30 (2015)CrossRefGoogle Scholar
  23. 23.
    O'Connor, P.B., Lin, C., Cournoyer, J.J., Pittman, J.L., Belyayev, M., Budnik, B.A.: Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 17, 576–585 (2006)CrossRefGoogle Scholar
  24. 24.
    Savitski, M.M., Kjeldsen, F., Nielsen, M.L., Zubarev, R.A.: Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. J. Am. Soc. Mass Spectrom. 18, 113–120 (2007)CrossRefGoogle Scholar
  25. 25.
    Chung, T.W., Hui, R., Ledvina, A.R., Coon, J.J., Tureček, F.: Cascade dissociations of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides. J. Am. Soc. Mass Spectrom. 23, 1336–1350 (2012)CrossRefGoogle Scholar
  26. 26.
    Ledvina, A.R., Chung, T.W., Hui, R., Coon, J.J., Tureček, F.: Cascade dissociations of peptide cation-radicals. Part 2. Infrared multiphoton dissociation and mechanistic studies of z-ions from pentapeptides. J. Am. Soc. Mass Spectrom. 23, 1351–1363 (2012)CrossRefGoogle Scholar
  27. 27.
    Chung, T.W., Tureček, F.: Backbone and side-chain specific dissociations of z ions from non-tryptic peptides. J. Am. Soc. Mass Spectrom. 21, 1279–1295 (2010)CrossRefGoogle Scholar
  28. 28.
    Hao, Q., Song, T., Ng, D.C.M., Quan, Q., Siu, C.K., Chu, I.K.: Arginine facilitated isomerization: radical-induced dissociation of aliphatic radical cationic glycylarginyl(iso)leucine tripeptides. J. Phys. Chem. B. 116, 7627–7634 (2012)CrossRefGoogle Scholar
  29. 29.
    Zhao, J., Song, T., Xu, M., Quan, Q., Siu, K.W.M., Hopkinson, A.C., Chu, I.K.: Intramolecular hydrogen atom migration along the backbone of cationic and neutral radical tripeptides and subsequent radical-induced dissociations. Phys. Chem., Chem. Phys. 14, 8723–8731 (2012)CrossRefGoogle Scholar
  30. 30.
    Lai, C.-K., Mu, X., Hao, Q., Hopkinson, A.C., Chu, I.K.: Formation, isomerization, and dissociation of ε- and α-carbon-centered tyrosyl glycyl glycine radical cations. Phys. Chem., Chem. Phys. 16, 24235–24243 (2014)CrossRefGoogle Scholar
  31. 31.
    Ledvina, A.R., Coon, J.J., Tureček, F.: Competitive hydrogen atom migrations accompanying cascade dissociations of peptide cation-radicals of the z+● type. Int. J. Mass Spectrom. 377, 44–53 (2015)CrossRefGoogle Scholar
  32. 32.
    Xu, M., Tang, W.-K., Mu, X., Ling, Y., Siu, C.-K., Chu, I.K.: α-Radical induced CO2 loss from the aspartic acid side chain of the collisionally induced tripeptide aspartylglycylarginine radical cation. Int. J. Mass Spectrom. 390, 56–62 (2015)CrossRefGoogle Scholar
  33. 33.
    Shaffer, C.J., Pepin, R., Tureček, F.: Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals. J. Mass Spectrom. 50, 1438–1442 (2015)CrossRefGoogle Scholar
  34. 34.
    Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)CrossRefGoogle Scholar
  35. 35.
    Stewart, J.J.P.: Optimization of parameters for semi-empirical methods. V. Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)CrossRefGoogle Scholar
  36. 36.
    Řezáč, J., Fanfrlík, J., Salahub, D., Hobza, P.: Semi-empirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. J. Chem. Theory Comput. 5, 1749–1760 (2009)CrossRefGoogle Scholar
  37. 37.
    Stewart, J.J.P.: MOPAC 2012 Stewart Computational Chemistry: Colorado Springs, CO, USAGoogle Scholar
  38. 38.
    Rezac, J.: Cuby: an integrative framework for computational chemistry. J. Comput. Chem. 37, 1230–1237 (2016)CrossRefGoogle Scholar
  39. 39.
    Becke, A.D.: New mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993)CrossRefGoogle Scholar
  40. 40.
    Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem., Chem. Phys. 10, 6615–6620 (2008)CrossRefGoogle Scholar
  41. 41.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)CrossRefGoogle Scholar
  42. 42.
    Møller, C., Plesset, M.S.: A note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934)CrossRefGoogle Scholar
  43. 43.
    Schlegel, H.B.: Potential energy curves using unrestricted Moller-Plesset perturbation theory with spin annihilation. J. Chem. Phys. 84, 4530 (1986)CrossRefGoogle Scholar
  44. 44.
    Mayer, I.: Spin-projected UHF method. IV. Comparison of potential curves given by different one-electron methods. Adv. Quantum Chem. 12, 189–262 (1980)CrossRefGoogle Scholar
  45. 45.
    Knowles, P.J., Andrews, J.S., Amos, R.D., Handy, N.C., Pople, J.A.: Restricted Møller-Plesset theory for open shell molecules. Chem. Phys. Lett. 186, 130–136 (1991)CrossRefGoogle Scholar
  46. 46.
    Chan, B., Radom, L.: Assessment of theoretical procedures for hydrogen atom abstraction by chlorine, and related reactions. Theor. Chem. Acc. 130, 251–260 (2011)CrossRefGoogle Scholar
  47. 47.
    Furche, F., Ahlrichs, A.: Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 117, 7433–7447 (2002)CrossRefGoogle Scholar
  48. 48.
    Turecek, F.: Benchmarking electronic excitation energies and transitions in peptide radicals. J. Phys. Chem. A. 119, 10101–10111 (2015)CrossRefGoogle Scholar
  49. 49.
    Barbatti, M., Ruckenbauer, M., Plasser, F., Pittner, J., Granucci, G., Persico, M., Lischka, H.: Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Comput. Mol. Sci. 4, 26–33 (2014)Google Scholar
  50. 50.
    Barbatti, M., Aquino, A.J., Lischka, H.: The UV absorption of nucleobases: semiclassical ab initio spectra simulations. Phys. Chem., Chem. Phys. 12, 4959–4967 (2010)CrossRefGoogle Scholar
  51. 51.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford (2009)Google Scholar
  52. 52.
    Gilbert, R.G., Smith, S.C.: Theory of unimolecular and recombination reactions, pp. 52–132. Blackwell Scientific Publications, Oxford (1990)Google Scholar
  53. 53.
    Zhu, L., Hase, W.L.: Quantum chemistry program exchange; Indiana University: Bloomington (1994) Program no. QCPE 644Google Scholar
  54. 54.
    Frank, A.J., Sadílek, M., Ferrier, J.G., Turecek, F.: Sulfur oxyacids and radicals in the gas phase. A variable-time neutralization-photoexcitation-reionization mass spectrometric and ab initio/RRKM study. J. Am. Chem. Soc. 119, 12343–12353 (1997)CrossRefGoogle Scholar
  55. 55.
    Pepin, R., Tureček, F.: Kinetic ion thermometers for electron transfer dissociation. J. Phys. Chem. B. 119, 2818–2826 (2015)CrossRefGoogle Scholar
  56. 56.
    Tureček, F.: Proton affinity of dimethyl sulfoxide and relative stabilities of C2H6OS molecules and C2H7OS+ ions. A comparative G2(MP2) ab initio and density functional theory study. J. Phys. Chem. A. 102, 4703–4713 (1998)CrossRefGoogle Scholar
  57. 57.
    Rablen, P.R.: Is the acetate anion stabilized by resonance or electrostatics? A systematic structural comparison. J. Am. Chem. Soc. 122, 357–368 (2000)CrossRefGoogle Scholar
  58. 58.
    Tureček, F.: Temperature effects in mass spectrometry. On the estimation of thermal energies of organic molecules. Org. Mass Spectrom. 26, 1074–1081 (1991)CrossRefGoogle Scholar
  59. 59.
    Turecek, F.: N–Cα-bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a nonergodic process? J. Am. Chem. Soc. 125, 5954–5963 (2003)CrossRefGoogle Scholar
  60. 60.
    Tureček, F., Syrstad, E.A., Seymour, J.L., Chen, X., Yao, C.: Peptide cation-radicals. A computational study of the competition between peptide N–Cα bond cleavage and loss of the side chain in the [GlyPhe-NH2 + 2H]+• cation radical. J. Mass Spectrom. 38, 1093–1104 (2003)CrossRefGoogle Scholar
  61. 61.
    Pepin, R., Layton, E.D., Liu, Y., Afonso, C., Tureček, F.: Where does the electron go? Stable and metastable peptide cation radicals formed by electron transfer. J. Am. Soc. Mass Spectrom. 28, 164–181 (2017)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceOsaka UniversityOsakaJapan
  2. 2.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations