Advertisement

Chieseiceras dolomiticum n. sp. (Ammonoidea) and its significance for the calibration of the Triassic platform interior stratigraphy at Latemar (Southern Alps, Italy)

  • Peter BrackEmail author
  • Hans Rieber
Regular Research Article

Abstract

The species Chieseiceras dolomiticum n. sp. along with other ammonoid species (Latemarites latemarensis, Halilucites rusticus) helps constraining the age of the cyclic platform interior portion at Latemar (Dolomites, northern Italy). The comparison of ammonoids from the Latemar platform with the fossil record in basinal successions in the Southern Alps (including the Ladinian GSSP section at Bagolino) and Hungary suggests that the entire rhythmically bedded Latemar interval is entirely late Anisian in age. More than 400 stratigraphical metres of bedded shallow water carbonates at Latemar are found to correspond to less than 5 m of siliceous nodular limestone in the pelagic succession at Bagolino. The refined correlation will be significant for the reassessment of the cyclic Latemar stratigraphy in the light of new geochronological calibration of the South Alpine Middle Triassic.

Keywords

Middle Triassic Dolomites Latemar Carbonate platforms Ammonoids 

Notes

Acknowledgements

This article is a late outcome of a fruitful collaboration between the authors and members of the geological Institute of the University of Heidelberg. In July 2000 Thilo Bechstädt and Rainer Zühlke guided us to the fossil locality on the very top of Cimon del Latemar. There the group was lucky not only to identify the site, but also to survive a heavy thunderstorm and lightning. The article benefitted from suggestions made by three anonymous reviewers.

References

  1. Assereto, R. (1969). Sul significato stratigrafico della “Zona ad Avisianus” del Trias Medio delle Alpi. Bollettino della Società Geologica Italiana, 88, 123–145.Google Scholar
  2. Bechstädt, T., Brack, P., Preto, N., Rieber, H., & Zühlke, R. (2003). Field Trip to Latemar, September 14–16/17, 2003. Triassic geochronology and cyclostratigraphy—a field symposium, St. Christina/Val Gardena, Dolomites, Italy, September 11-13, 2003. IUGS—STS. Guidebook.Google Scholar
  3. Brack, P., Mundil, R., Oberli, F., Meier, M., & Rieber, H. (1996). Biostratigraphic and radiometric age data question the Milankovitch characteristics of the Latemar cycles (Southern Alps, Italy). Geology, 24, 371–375.CrossRefGoogle Scholar
  4. Brack, P., & Rieber, H. (1986). Stratigraphy and ammonoids of the lower Buchenstein Beds of the Brescian Prealps and Giudicarie and their significance for the Anisian/Ladinian boundary. Eclogae geologicae Helveticae, 79(1), 181–225.Google Scholar
  5. Brack, P., & Rieber, H. (1993). Towards a better definition of the Anisian/Ladinian boundary: new biostratigraphic data and correlations of boundary sections from the Southern Alps. Eclogae geologicae Helveticae, 86(2), 415–527.Google Scholar
  6. Brack, P., Rieber, H., Nicora, A., & Mundil, R. (2005). The Global Boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28(4), 233–244.Google Scholar
  7. Bubnoff, S. (1921). Die ladinische Fauna von Forno (Mezzavalle) bei Predazzo. Verhandlungen des Naturhistorisch-medizinischen Vereins zu Heidelberg. Neue Folge, 14, 257–636.Google Scholar
  8. De Zanche, V., Gianolla, P., Manfrin, S., Mietto, P., & Roghi, G. (1995). A middle Triassic back-stepping carbonate platform in the Dolomites (Italy): Sequence stratigraphy and Biochronostratigraphy. Memorie di Scienze Geologiche, 47, 135–155.Google Scholar
  9. Egenhoff, S. O., Peterhänsel, A., Bechstädt, T., Zühlke, R., & Grötsch, J. (1999). Facies architecture of an isolated carbonate platform; tracing the cycles of the Latemar (Middle Triassic, northern Italy. Sedimentology, 46, 893–912.CrossRefGoogle Scholar
  10. Emmerich, A., Zamparelli, V., Bechstädt, T., & Zühlke, R. (2005). The reefal margin and slope of a Middle Triassic carbonate platform: the Latemar (Dolomites, Italy). Facies, 50, 573–614.CrossRefGoogle Scholar
  11. Fantini Sestini, N. (1994). The Ladinian ammonoids from Calcare di Esino of Val Parina (Bergamasc Alps Italy). Pt 1. Rivista Italiana di Paleontologia e Stratigrafia, 100(2), 227–284.Google Scholar
  12. Fantini Sestini, N. (1996). The Ladinian ammonoids from the Calcare di Esino of Val Parina (Bergamasc Alps Italy) Pt 2. Rivista Italiana di Paleontologia e Stratigrafia, 102(2), 211–226.Google Scholar
  13. Franceschi, M., Preto, N., Marangon, A., Gattolin, G., & Meda, M. (2016). High precipitation rate in a Middle Triassic carbonate platform: Implications on the relationship between seawater saturation state and carbonate production. Earth and Planetary Science Letters, 444, 215–224.CrossRefGoogle Scholar
  14. Gaetani, M., Fois, E., Jadoul, F., & Nicora, A. (1981). Nature and evolution of Middle Triassic carbonate buildups in the Dolomites (Italy). Marine Geology, 44, 25–57.CrossRefGoogle Scholar
  15. Goldhammer, R. K., Dunn, P. A., & Hardie, L. A. (1987). High frequency glacioeustatic sea level oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in northern Italy. American Journal of Science, 287, 853–892.CrossRefGoogle Scholar
  16. Goldhammer, R. K., Dunn, P. A., & Hardie, L. A. (1990). Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: Examples from the Alpine Triassic platform carbonates. Geological Society of America Bulletin, 102, 535–562.CrossRefGoogle Scholar
  17. Gramigna, P., Franceschi, M., Gattolin, G., Preto, N., Massironi, M., Riva, A., et al. (2013). Geological map of the Middle Triassic Latemar platform (Western Dolomites, Northern Italy). Journal of Maps, 9, 313–324.CrossRefGoogle Scholar
  18. Hauer, F. (1855). Über einige Fossilien aus dem Dolomit des Monte Salvatoe bei Lugano. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, mathematisch—naturwissenschaftliche Classe, 15, 407–417.Google Scholar
  19. Hinnov, L. A., & Goldhammer, R. K. (1991). Spectral analysis of the Middle Triassic Latemar Limestone. Journal of Sedimentary Petrology, 61, 1173–1193.Google Scholar
  20. Kent, D. V., Muttoni, G., & Brack, P. (2004). Magnetostratigraphic confirmation of a much faster tempo for sea-level change for the Middle Triassic Latemar platform carbonates. Earth and Planetary Science Letters, 228, 369–377.CrossRefGoogle Scholar
  21. Koken, E. (1911). Zur Geologie Südtirols. I. Die Wengener Kalke. Centralblatt für Mineralogie, Geologie und Paläontologie, 1911, 561–572.Google Scholar
  22. Manfrin, S., Mietto, P., & Preto, N. (2005). Ammonoid biostratigraphy of the Middle Triassic Latemar platform (Dolomites, Italy) and its correlation with Nevada and Canada. Geobios, 38, 477–504.CrossRefGoogle Scholar
  23. Marangon, A., Gattolin, G., Della Porta, G., & Preto, N. (2011). The Latemar: a flat-topped, steep fronted platform dominated by microbialites and synsedimentary cements. Sedimentary Geology, 240, 97–114.CrossRefGoogle Scholar
  24. Maurer, F. (2000). Growth mode of Middle Triassic carbonate platforms in the Western Dolomites (Southern Alps, Italy). Sedimentary Geology, 134, 275–286.CrossRefGoogle Scholar
  25. Merian, P. (1854). Muschelkalk-Versteinerungen im Dolomite des Monte S. Salvatore bei Lugano. Verhandlungen der naturforschenden Gesellschaft Basel, 1, 84–90.Google Scholar
  26. Meyers, S. R. (2008). Resolving Milankovitchian controversies: The Triassic Latemar Limestone and the Eocene Green River Formation. Geology, 36(4), 319–322.CrossRefGoogle Scholar
  27. Mietto, P., Gianolla, P., Manfrin, S., & Preto, N. (2003). Refined ammonoid biochronostratigraphy of the Bagolino section (Lombardian Alps, Italy), GSSP candidate for the base of the Ladinian Stage. Rivista Italiana di Paleoontologia e Stratigrafia, 109(3), 449–462.Google Scholar
  28. Mietto, P., & Manfrin, S. (1995). A high resolution Middle Triassic ammonoid standard scale in the Tethys Realm. A preliminary report. Bulletin de la Société Géologique de France, 166, 539–563.Google Scholar
  29. Mojsisovics, E.v. (1882). Die Cephalopoden der mediterranen Triasprovinz. Abhandlungen der k.k. geologischen Reichsanstalt, 10, 322.Google Scholar
  30. Mundil, R., Zühlke, R., Bechstaedt, T., Peterhänsel, A., Egenhoff, S. O., Oberli, F., et al. (2003). Cyclicities in Triassic platform carbonates: synchronizing radio-isotopic and orbital clocks. Terra Nova, 15(2), 81–87.CrossRefGoogle Scholar
  31. Pálfy, J., Parrish, R. R., & Vörös, A. (2003). Mid-Triassic integrated U-Pb geochronology and ammonoid biochronology from the Balaton Highland (Hungary). Journal of the Geological Society, 160, 271–284.CrossRefGoogle Scholar
  32. Philipp, H. (1904). Paläontologisch-geologische Untersuchungen aus dem Gebiet von Predazzo. Zeitschrift der deutschen geologischen Gesellschaft, 56, 1–98.Google Scholar
  33. Preto, N., Franceschi, M., Gattolin, G., Massironi, M., Riva, A., Gramigna, P., et al. (2011). The Latemar: a Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics. Sedimentary Geology, 234, 1–18.CrossRefGoogle Scholar
  34. Preto, N., Hinnov, L. A., De Zanche, V., Mietto, P., & Hardie, L. A. (2004). The Milankovitch interpretation of the Latemar platform cycles (Dolomites, Italy): Implications for geochronology, biostratigraphy, and Middle Triassic carbonate accumulation. In D’Argenio et al. (Eds.), Cyclostratigraphy: Approaches and case histories: SEPM (Society for Sedimentary Geology) Special Publication (81, pp. 167–182)Google Scholar
  35. Preto, N., Hinnov, L. A., Hardie, L. A., Blaustein, M. K., & De Zanche, V. (2001). Middle Triassic orbital signature recorded in the shallow-marine Latemar carbonate buildup (Dolomites, Italy). Geology, 29, 1123–1126.CrossRefGoogle Scholar
  36. Preto, N., Spötl, C., Mietto, P., Gianolla, P., Riva, A., & Manfrin, S. (2005). Aragonite dissolution, sedimentation rates and carbon isotopes in deep-water hemipelagites (Livinallongo Formation, Middle Triassic, northern Italy). Sedimentary Geology, 181, 173–194.CrossRefGoogle Scholar
  37. Richthofen, F.v. (1860). Geognostische Beschreibung der Umgegend von Predazzo, Sanct Cassian und der Seisser Alpe in Süd-Tyrol (p. 327). Gotha: Justus-Perthes.Google Scholar
  38. Spahn, Z. P., Kodama, K. P., & Preto, N. (2013). High-resolution estimate for the depositional duration of the Triassic Latemar platform: A new magnetostratigraphic and magnetic susceptibility cyclostratigraphy from basinal sediments at Rio Sacuz, Italy. Geochemistry, Geophysics, Geosystems, 14, 1245–1257.CrossRefGoogle Scholar
  39. Storck, J.-C., Brack, P., Wotzlaw, J.-F., & Ulmer, P. (2019). Timing and evolution of Middle Triassic magmatism in the Southern Alps (Northern Italy). Journal of the Geological Society.  https://doi.org/10.1144/jgs2018-123.Google Scholar
  40. Vörös, A. (1998). A Balaton-felvidék Triás ammonoideái és biostratigrádiája (Triassic ammonoids and biostratigraphy of the Balaton Highland). Magyar Természettudományi Múzeum, Studia Naturalia, 12, 1–105. [in Hungarian].Google Scholar
  41. Vörös, A., Budai, T., & Szabó, I. (2008). The base of the Curionii Zone (Ladinian, Triassic) in Felsõörs (Hungary): improved correlation with the Global Stratotype Section. Central European Geology, 51(4), 325–339.CrossRefGoogle Scholar
  42. Wilckens, R. (1909). Paläontologische Untersuchung triadischer Faunen aus der Umgebung von Predazzo in Südtirol. Verhandlungen des naturhistorischen-medizinischen Vereins zu Heidelberg. Neue Folge, 10, 81–231.Google Scholar
  43. Wotzlaw, J.-F., Brack, P., & Storck, J.-C. (2018). High-resolution stratigraphy and zircon U-Pb geochronology of the Middle Triassic Buchenstein Formation (Dolomites, northern Italy): precession-forcing of hemipelagic carbonate sedimentation and calibration of the Anisian–Ladinian boundary interval. Journal of the Geological Society, 175, 71–85.CrossRefGoogle Scholar
  44. Zühlke, R. (2004). Integrated cyclostratigraphy of a model Mesozoic carbonate platform—the Latemar (Middle Triassic, Italy). In D’Argenio et al. (Eds.), Cyclostratigraphy: Approaches and case histories: SEPM (Society for Sedimentary Geology) Special Publication, (81, pp. 183–211)Google Scholar
  45. Zühlke, R., Bechstädt, T., & Mundil, R. (2003). Sub-Milankovitch and Milankovitch forcing on a model Mesozoic carbonate platform—the Latemar (Middle Triassic, Italy). Terra Nova, 15, 69–80.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2019

Authors and Affiliations

  1. 1.Departement ErdwissenschaftenETH ZürichZurichSwitzerland
  2. 2.Paläontologisches Institut und MuseumUniversität ZürichZurichSwitzerland

Personalised recommendations