Morphological paradox of disparid crinoids (Echinodermata): phylogenetic analysis of a Paleozoic clade

Regular Research Article

Abstract

Phylogenetic relationships within the parvclass Disparida are evaluated using parsimony-based phylogenetic methods. The Disparida is a combination of forms with simplified morphologies and forms with highly specialized morphologies. The latter, e.g., Acolocrinidae, Calceocrinidae, Catillocrinidae, and Myelodactylidae, are consistently identified as clades, as are some simplified forms, such as the Allagecrinidae, Eustenocrinidae, and Tetragonocrinidae. The Iocrinidae is typically recovered as a paraphyletic grade between the outgroup the oldest disparid, Alphacrinus, and more tipward disparids. The primary aspects of disparid phylogeny that remain ambiguous using parsimony analysis are the Cincinnaticrinidae and Homocrinidae, each of which is broadly paraphyletic with taxa in basal and/or derived positions, the status of several monogeneric families, and the phylogenetic position of disparids too poorly known to include in phylogenetic analysis.

Keywords

Crinoidea Disparida Phylogeny Ordovician Silurian 

Notes

Acknowledgements

S.R. Cole ran the analyses for the time-scaled tree and the stratigraphic congruence metrics. S.R. Cole, D.F. Wright, E.C. Rhenberg, and T.W. Kammer are also thanked for improving preliminary drafts of this manuscript and/or for discussions of various ideas leading to this manuscript. Careful reviews by two anonymous reviewers significantly improved this manuscript. Also, we thank the following (in alphabetical order) for assistance with curated specimens: Tiffany Adrain, University of Iowa; Roger Burkhalter, Sam Noble Oklahoma Museum of Natural History University of Oklahoma; Jessica Cundiff, Museum of Comparative Zoology, Harvard University; Jean Dougherty, Geological Survey of Canada, Ottawa; Tim Ewin, Natural History Museum, London; Kathy Hollis, US National Museum of Natural History; Brenda Hunda Cincinnati Museum Center; Kathy Leacock, Buffalo Museum of Science; Franz-Josef Lindemann, Natural History Museum, University of Oslo; Paul Mayer, Field Museum of Natural History; Ann Molineux, University of Texas, Austin; Sergey Rozhnov and G.V. Mirantsev, Borissiak Paleontological Institute, Moscow; Janet Waddington, Royal Ontario Museum. David Swofford made PAUP 4.0a142 available for this research. This research was supported by the US National Science Foundation project Assembling the Echinoderm Tree of Life (DEB 1036416).

Supplementary material

13358_2018_147_MOESM1_ESM.pdf (48.1 mb)
Supplementary material 1 (PDF 49249 kb)

References

  1. Ausich, W. I. (1986a). Palaeoecology and history of the Calceocrinidae (Palaeozoic Crinoidea). Palaeontology, 29, 85–99.Google Scholar
  2. Ausich, W. I. (1986b). The crinoids of the Al Rose Formation (Early Ordovician, Inyo County, California, USA). Alcheringa, 10, 217–224.CrossRefGoogle Scholar
  3. Ausich, W. I. (1996). Crinoid plate circlet homologies. Journal of Paleontology, 70, 955–964.CrossRefGoogle Scholar
  4. Ausich, W. I. (1998a). Early phylogeny and subclass division of the Crinoidea (phylum Echinodermata). Journal of Paleontology, 72, 499–510.CrossRefGoogle Scholar
  5. Ausich, W.I. (1998b). Phylogeny of Arenig to Caradoc Crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. University of Kansas Paleontological Contributions Papers, New Series, 9, 36 pp.Google Scholar
  6. Ausich, W. I., & Deline, B. (2012). Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology, 361–362, 38–48.  https://doi.org/10.1016/j.palaeo.2012.07.022.CrossRefGoogle Scholar
  7. Ausich, W. I., Kammer, T. W., & Baumiller, T. K. (1994). Demise of the Middle Paleozoic crinoid fauna: A single extinction event or rapid faunal turnover? Paleobiology, 20, 345–361.CrossRefGoogle Scholar
  8. Ausich, W. I., Kammer, T. W., Rhenberg, E. C., & Wright, D. F. (2015). Early phylogeny of crinoids within the Pelmatozoan clade. Palaeontology, 58, 937–952.CrossRefGoogle Scholar
  9. Bather, F.A. (1893). The Crinoidea of Gotland, Part 1: The Crinoidea Inadunata. Kongliga Svenska Vetenskaps-Adademiens Handlingar, 25(2), 200 pp.Google Scholar
  10. Baumiller, T. K. (1994). Patterns of dominance and extinction in the record of Paleozoic crinoids. In B. David, A. Guille, J. P. Féral, & M. Roux (Eds.), Echinoderms Through Time (Echinoderms Dijon) (pp. 193–198). Rotterdam: A. A. Balkema.Google Scholar
  11. Bell, M. A., & Lloyd, G. T. (2015). strap: An R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology, 58, 379–389.CrossRefGoogle Scholar
  12. Benton, M. J., & Storrs, G. W. (1994). Testing the quality of the fossil record: Paleontological knowledge is improving. Geology, 22, 111–114.CrossRefGoogle Scholar
  13. Brower, J. C. (1966). Functional morphology of Calceocrinidae with description of some new species. Journal of Paleontology, 40, 613–634.Google Scholar
  14. Cole, S. R. (2017). Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology, 91, 715–734.CrossRefGoogle Scholar
  15. Donovan, S. K. (1988). The early evolution of the Crinoidea. In C. R. C. Paul & A. B. Smith (Eds.), Echinoderm phylogeny and evolutionary biology (pp. 235–244). Oxford: Clarendon Press.Google Scholar
  16. Donovan, S. K. (1989a). The significance of the British Ordovician crinoid fauna. Modern Geology, 13, 243–255.Google Scholar
  17. Donovan, S. K. (1989b). Pelmatozoan columnals from the Ordovician of the British Isles, Part 2. Palaeontographical Society Monograph, 142(580), 60–114.Google Scholar
  18. Donovan, S. K., Miller, C. G., Sansom, I. J., Heward, A. P., & Schreurs, J. (2011). A Laurentian Iocrinus Hall (Crinoidea, Disparida) in the Dapingian or Darriwilian (Middle Ordovician, Arenig) of Oman. Palaeontology, 54, 525–533.CrossRefGoogle Scholar
  19. Eckert, J. D. (1988). Late Ordovician extinction of North American and British crinoids. Lethaia, 21, 147–167.CrossRefGoogle Scholar
  20. Guensburg, T. E. (2010). Alphacrinus new genus and origin of the disparid clade. Journal of Paleontology, 84, 1209–1216.CrossRefGoogle Scholar
  21. Guensburg, T. E. (2012). Phylogenetic implications of the oldest crinoids. Journal of Paleontology, 86, 455–461.CrossRefGoogle Scholar
  22. Guensburg, T. E., Blake, D. B., Sprinkle, J., & Mooi, R. (2016). Crinoid ancestry without blastozoans. Acta Palaeontologica Polonica, 61, 253–266.Google Scholar
  23. Guensburg, T. E., & Sprinkle, J. (2003). The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, 364, 43.Google Scholar
  24. Guensburg, T. E., & Sprinkle, J. (2009). Solving the mystery of crinoid ancestry: New fossil evidence of arm origin and development. Journal of Paleontology, 83, 350–374.CrossRefGoogle Scholar
  25. Guensburg, T. E., & Sprinkle, J. (2010). Emended restoration of Titanocrinus sumralli Guensburg and Sprinkle, 2003 (Echinodermata, Crinoidea). Journal of Paleontology, 84, 566–568.CrossRefGoogle Scholar
  26. Guensburg, T. E., & Waisfeld, B. (2015). South America’s earliest (Ordovician, Floian) crinoids. Journal of Paleontology, 89, 622–630.CrossRefGoogle Scholar
  27. Hall, J. (1847). Palaeontology of New York, v. 1, Containing descriptions of the organic remains of the lower division of the New-York system (equivalent of the Lower Silurian rocks of Europe). Natural History of New York. Albany, State of New York, 6, 338 pp.Google Scholar
  28. Hall, J. (1852). Crinoidea of the Clinton and Niagara Groups (equivalent, in part, of the Middle Silurian strata of Europe). Albany, 72 pp.Google Scholar
  29. Huelesbeck, J. P. (1994). Comparing the stratigraphic record to estimates of phylogeny. Paleobiology, 20, 470–483.CrossRefGoogle Scholar
  30. Kammer, T. W., & Ausich, W. I. (2006). The “Age of Crinoids”: A Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios, 21, 238–248.CrossRefGoogle Scholar
  31. Kammer, T. W., Baumiller, T. K., & Ausich, W. I. (1997). Species longevity as a function of niche breadth: Evidence from fossil crinoids. Geology, 25, 219–222.CrossRefGoogle Scholar
  32. Kammer, T. W., Baumiller, T. K., & Ausich, W. I. (1998). Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology, 24, 155–176.Google Scholar
  33. Kelly, S. M., & Ausich, W. I. (1978). A new Lower Ordovician disparid crinoid from Utah. Journal of Paleontology, 52, 916–920.Google Scholar
  34. Kelly, S. M., & Ausich, W. I. (1979). A new name for the Lower Ordovician crinoid Pogocrinus Kelly and Ausich. Journal of Paleontology, 53, 1433.Google Scholar
  35. Kroh, A., & Smith, A. B. (2010). The phylogeny and classification of post-Paleozoic echinoids. Journal of Systematic Palaeontology, 8, 147–212.CrossRefGoogle Scholar
  36. Lane, N.G. (1978). Disparida and Hybocrinida. R.C. Moore, & C. Teichert (Eds.), Treatise on invertebrate paleontology, Pt. T. Echinodermata, 2, Volume 2 (pp. T292–T294). Boulder, Colorado and Lawrence, Kansas: Geological Society of America and University of Kansas Press.Google Scholar
  37. Lefebvre, B., Sumrall, C.D., Shroat-Lewis, R.A., Reich, M., Webster, G.D., Hunter, A.W., Nardin, E., Rozhnov, S.V., Guensburg, T.E., Touzeau, A., Noailles, F., & Sprinkle, J. (2013). Palaeobiogeography of Ordovician echinoderms. In D.A.T. Harper, & T. Servais (Eds.), Early palaeozoic biogeography and palaeogeography (pp. 173–198). Geological Society, London Memoirs, 38.Google Scholar
  38. McIntosh, G. (1979). Abnormal specimens of the Middle Devonian crinoid Bactrocrinites and their effect on the taxonomy of the genus. Journal of Paleontology, 53, 18–28.Google Scholar
  39. Miller, S.A. (1891). Palaeontology. Advance Sheets, Indiana Department of Geology and Natural Resources, 17th Annual Report, 103 pp.Google Scholar
  40. Moore, R.C. & L.R. Laudon. (1943). Evolution and classification of Paleozoic crinoids. Geological Society of America, Special Paper 46, 151 pp.Google Scholar
  41. Moore, R. C. (1952). Crinoids. In R. C. Moore, C. G. Lalicker, & A. G. Fischer (Eds.), Invertebrate fossils (pp. 604–652). New York: McGraw-Hill Book Company Inc.Google Scholar
  42. Moore, R.C. (1962a). Revision of Calceocrinidae. University of Kansas Paleontological Contributions, Echinodermata Article, 4, 40 pp.Google Scholar
  43. Moore, R. C. (1962b). Ray structures of some Inadunate crinoids. University of Kansas, Paleontological Contributions, Echinodermata Article, 5, 47 pp.Google Scholar
  44. Moore, R.C., & C. Teichert (Eds). (1978). Treatise on invertebrate paleontology, Part T, Echinodermata 2, Crinoidea, 3 volumes. Boulder Colorado and Lawrence, Kansas: Geological Society of America and University of Kansas, 1027 pp.Google Scholar
  45. Moore, R.C., Lane, N.G., Strimple, H.L., & Sprinkle, J. (1978). Order Disparida Moore and Laudon, 1943. In R.C. Moore, & C. Teichert (Eds.), Treatise on invertebrate paleontology, Part T, Echinodermata 2, Crinoidea (pp. T520–T564). Boulder Colorado and Lawrence Kansas: Geological Society of America and University of Kansas, pp. T520–T564.Google Scholar
  46. Norell, M. A. (1992). Taxic origin and temporal diversity: The effect of phylogeny. In M. J. Novacek & Q. D. Wheeler (Eds.), Extinction and phylogeny (pp. 89–118). New York: Columbia University Press.Google Scholar
  47. Paul, C.R.C. (1976). Palaeogeography of primitive echinoderms in the Ordovician. In M. G. Bassett (Ed.), The Ordovician system. Proceedings of a Palaeontological Association symposium, Birmingham, September, 1974 (pp. 533–574). Cardiff: University of Wales Press,Google Scholar
  48. Peters, S. E., & Ausich, W. I. (2008). A sampling-adjusted macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology, 34, 104–116.CrossRefGoogle Scholar
  49. Phillips, J. (1836). Illustrations of the geology of Yorkshire, or a description of the strata and organic remains. Pt 2, The Mountain Limestone districts (2nd ed., pp. 203–208). London: John Murray.Google Scholar
  50. Pol, D., & Norell, M. A. (2001). Comments on the Manhattan stratigraphic measure. Cladistics, 17, 285–289.CrossRefGoogle Scholar
  51. Rozhnov, S. V. (2002). Morphogenesis and evolution of crinoids and other Pelmatozoan echinoderms in the early Paleozoic. Palaeontological Journal, 36(sup. to issue 6), S525–S674.Google Scholar
  52. Sevastopulo, G. D., & Lane, N. G. (1988). Ontogeny and phylogeny of disparid crinoids. In C. R. C. Paul & A. B. Smith (Eds.), Echinoderm phylogeny and evolutionary biology (pp. 245–253). Oxford: Clarendon Press.Google Scholar
  53. Shumard, B. F. (1865). Catalogue of Palaeozoic fossils, Part 1, Echinodermata. Transactions of the St. Louis Academy of Science, 2(2), 334–407.Google Scholar
  54. Siddel, M. E. (1988). Stratigraphic fit to phylogenetics: a proposed solution. Cladistics, 14, 201–208.Google Scholar
  55. Simms, M. J. (1993). Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia, 26, 303–312.CrossRefGoogle Scholar
  56. Smith, A. B. (1994). Systematics and the fossil record. Documenting evolutionary patterns (p. 223). Oxford: Blackwell Science.CrossRefGoogle Scholar
  57. Springer, F. (1923). On the fossil crinoid family Catillocrinidae. Smithsonian Miscellaneous Collection, 76, 239 pp.Google Scholar
  58. Springer, F. (1926a) American Silurian crinoids. Smithsonian Institution Publication, 2872, 239 pp.Google Scholar
  59. Springer, F. (1926b). Unusual forms of fossil crinoids. Proceedings of the US National Museum, 67, 137 pp.Google Scholar
  60. Sprinkle, J., & Moore, R.C. (1978). Hybocrinida. In Moore, R.C. & Teichert, C. (Eds.), Treatise on Invertebrate Paleontology, Pt. T. Echinodermata, 2, Volume 2 (pp. T564–T574). Boulder, Colorado and Lawrence Kansas: Geological Society of America and University of Kansas Press.Google Scholar
  61. Swofford, D.L. (2015). PAUP*: Phylogenetic analysis using parsimony (and other methods) (version 4.0a142).Google Scholar
  62. Ubaghs, G. (1978). Skeletal morphology of fossil crinoids. In R.C. Moore, & C. Teichert (Eds.), Treatise on Invertebrate Paleontology, Pt. T. Echinodermata, 2, Volume 2 (pp. T58–T216). Boulder, Colorado and Lawrence, Kansas: Geological Society of America and University of Kansas Press.Google Scholar
  63. Wagner, P. L. (2000). Exhaustion of morphological character states among fossil taxa. Evolution, 54, 365–386.CrossRefGoogle Scholar
  64. Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: Theory and practice of phylogenetics (p. 432). Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  65. Willis, M. A. (1999). Congruence between phylogeny and stratigraphy: randomization tests and the Gap Excess Ratio. Systematic Biology, 48, 559–580.CrossRefGoogle Scholar
  66. Wright, D. F. (2015). Fossils, homology, and “Phylogenetic Paleo-ontogeny”: a reassessment of primary posterior plate homologies among fossil and living crinoids with insights from developmental biology. Paleobiology, 4, 570–591.CrossRefGoogle Scholar
  67. Wright, D. F. (2017). Baysian estimation of fossil phylogenies and evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91, 799–814.CrossRefGoogle Scholar
  68. Wright, D. F., Ausich, W. I., Cole, S. R., Peter, M. E., & Rhenberg, E. C. (2017). Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). Journal of Paleontology, 91, 829–846.CrossRefGoogle Scholar
  69. Zamora, S., Rahman, I. A., & Ausich, W. I. (2015). A new iocrinid crinoid (Disparida) from the Ordovician (Darriwilian) of Morocco. PeerJ, 3, e1450.  https://doi.org/10.7717/peerj.1450.CrossRefGoogle Scholar

Copyright information

© Akademie der Naturwissenschaften Schweiz (SCNAT) 2018

Authors and Affiliations

  1. 1.School of Earth SciencesOhio State UniversityColumbusUSA

Personalised recommendations