Advertisement

Steroid hormones in Acari, their functions and synthesis

  • Mari H. OgiharaEmail author
  • DeMar Taylor
  • Hiroshi Kataoka
Review
  • 63 Downloads

Abstract

Acari are arthropods with the conserved features of an exoskeleton that require the shedding of cuticle for growth. Steroid hormones, ecdysteroids, regulate the mechanisms necessary for growth and development. Acari lack juvenile hormones, so they utilize ecdysteroids as the solo lipophilic hormone throughout their life for molting as well as for reproduction. Although some research on ecdysteroidogenesis has been conducted in the Acari, two important questions remain unclear: the active form of ecdysteroid and sites for ecdysteroidogenesis. The active form of ecdysteroids in Acari is controversial. Analysis by mass spectrometry confirms that most Acari use 20-hydroxyecdysone (20E), but the spider mite Tetranychus urticae (Koch) (Acari: Tetranychidae) uses Ponasterone A (25-deoxy-20-hydroxyecdysone). Analyses of ecdysteoridogenic genes provide clear evidence that the ovary is the primary site of ecdysteroidogenesis in both immature and mature ticks. In this review, the known functions of ecdysteroids are summarized and recent progress on ecdysteroidogenesis is introduced.

Keywords

Acari Arthropod Ecdysteroid Ecdysteroidogenesis Hormone Development Reproduction 

Notes

Acknowledgements

This study was supported by a Grant-in-Aid for JSPS Restart Postdoctoral Fellows from Japan Society for the Promotion of Science (Kakenhi 16J40019, MHO).

References

  1. Allan SA, Phillips JS, Tayor D, Sonenshine DE (1988) Genital sex pheromones of ixodid ticks: evidence for the role of fatty acids from the anterior reproductive tract in mating of Dermacentor variabilis and Dermacentor andersoni. J Insect Physiol 34:315–323.  https://doi.org/10.1016/0022-1910(88)90142-4 CrossRefGoogle Scholar
  2. Ameku T, Niwa R (2016) Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet 12:e1006123.  https://doi.org/10.1371/journal.pgen.1006123 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ameku T, Yoshinari Y, Fukuda R, Niwa R (2017) Ovarian ecdysteroid biosynthesis and female germline stem cells. Fly 11:185–193.  https://doi.org/10.1080/19336934.2017.1291472 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ameku T, Yoshinari Y, Texada MJ, Kondo S, Amezawa K, Yoshizaki G, Shimada-Niwa Y, Niwa R (2018) Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol 16:e2005004.  https://doi.org/10.1371/journal.pbio.2005004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Asazuma H, Nagata S, Nagasawa H (2009) Inhibitory effect of molt-inhibiting hormone on phantom expression in the Y-organ of the kuruma prawn, Marsupenaeus japonicus. Arch Insect Biochem 72:220–233.  https://doi.org/10.1002/arch.20335 CrossRefGoogle Scholar
  6. Baker KD, Warren JT, Thummel CS, Gilbert LI, Mangelsdorf DJ (2000) Transcriptional activation of the Drosophila ecdysone receptor by insect and plant ecdysteroids. Insect Biochem Mol 30:1037–1043.  https://doi.org/10.1016/S0965-1748(00)00075-8 CrossRefGoogle Scholar
  7. Blais C, Lafont R (1984) Ecdysteroid metabolism by soluble enzymes from an insect. Metabolic relationships between 3 beta-hydroxy-, 3 alpha-hydroxy- and 3-oxoecdysteroids. H-S Z Physiol Chem 365:809–817CrossRefGoogle Scholar
  8. Blais C, Blasco T, Maria A, Dauphin-Villemant C, Lafont R (2010) Characterization of ecdysteroids in Drosophila melanogaster by enzyme immunoassay and nano-liquid chromatography-tandem mass spectrometry. J Chromatogr B 878:925–932.  https://doi.org/10.1016/j.jchromb.2010.02.018 CrossRefGoogle Scholar
  9. Bloch K, Clark AJ, Fraenkel G, Langdon RG (1956) Impaired steroid biogenesis in insect larvae. Biochim Biophys Acta 21:176CrossRefPubMedGoogle Scholar
  10. Boldbaatar D, Battsetseg B, Matsuo T, Hatta T, Umemiya-Shirafuji R, Xuan X, Fujisaki K (2008) Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem Cell Biol 86:331–344.  https://doi.org/10.1139/O08-071 CrossRefPubMedGoogle Scholar
  11. Cabrera AR, Shirk PD, Evans JD, Hung K, Sims J, Alborn H, Teal PE (2015) Three Halloween genes from the Varroa mite, Varroa destructor (Anderson and Trueman) and their expression during reproduction. Insect Mol Biol 24:277–292.  https://doi.org/10.1111/imb.12155 CrossRefPubMedGoogle Scholar
  12. Chambers CM, Dotson EM, Oliver JH Jr (1996) Ecdysteroid titers during postembryonic development of Dermanyssus gallinae (Acari: Dermanyssidae). J Med Entomol 33:11–14.  https://doi.org/10.1093/jmedent/33.1.11 CrossRefPubMedGoogle Scholar
  13. Charrois GJR, Mao H, Kaufman WR (1996) Impact on salivary gland degeneration by putative ecdysteroid antagonists and agonists in the ixodid tick Amblyomma hebraeum. Pestic Biochem Phys 55:140–149CrossRefGoogle Scholar
  14. Chávez VM, Marques G, Delbecque JP, Kobayashi K, Hollingsworth M, Burr J, Natzle JE, O’Connor MB (2000) The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development 127:4115–4126PubMedGoogle Scholar
  15. Chinzei Y, Taylor D, Ando K (1991) Effects of juvenile hormone and its analogs on vitellogenin synthesis and ovarian development in Ornithodoros moubata (Acari: Argasidae). J Med Entomol 28:506–513.  https://doi.org/10.1093/jmedent/28.4.506 CrossRefPubMedGoogle Scholar
  16. Chinzei Y, Taylor D, Miura K, Ando K (1992) Vitellogenesis induction by synganglion factor in adult female tick, Ornithodoros moubata (Acari:Argasidae). J Acarol Soc Jpn 1:15–26.  https://doi.org/10.2300/acari.1.15 CrossRefGoogle Scholar
  17. Christiaens O, Iga M, Velarde RA, Rougé P, Smagghe G (2010) Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signaling in the pea aphid. Insect Mol Biol 19:187–200.  https://doi.org/10.1111/j.1365-2583.2009.00957.x CrossRefPubMedGoogle Scholar
  18. Clark AJ, Bloch K (1959) Conversion of ergosterol to 22-de-hydrocholesterol in Blattella germanica. J Biol Chem 234:2589–2594PubMedGoogle Scholar
  19. Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636.  https://doi.org/10.1111/j.1365-2583.2006.00672.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clayton RB (1964) The utilization of sterols by insects. J Lipid Res 5:3–19PubMedGoogle Scholar
  21. Connat JL, Ducommun JM, Diehl PA (1983) Juvenile hormone-like substances can induce vitellogenesis in the tick Ornithodoros moubata (Acarina: Argasidae). Invertebr Reprod Dev 6:285–294CrossRefGoogle Scholar
  22. Connat JL, Diehl PA, Morici M (1984) Metabolism of ecdysteroids during the vitellogenesis of the tick Ornithodoros moubata (Ixodoidea, Argasidae): accumulation of apolar metabolites in the eggs. Gen Comp Endocr 56:100–110.  https://doi.org/10.1016/0016-6480(84)90066-2 CrossRefPubMedGoogle Scholar
  23. Connat JL, Diehl PA, Gfeller H, Morici M (1985) Ecdysteroids in females and eggs of the Ixodid tick Amblyomma hebraeum. Int J Invetebr Reprod Dev 8:103–116CrossRefGoogle Scholar
  24. Connat JL, Lafont R, Diehl PA (1986) Metabolism of [3H]ecdysone by isolated tissues of the female ixodid tick Amblyomma hebraeum (Ixodoidea; Ixodidae). Mol Cell Endocrinol 47:257–267.  https://doi.org/10.1016/0303-7207(86)90119-X CrossRefPubMedGoogle Scholar
  25. Cottam DM, Milner MJ (1997) The effects of several ecdysteroids and ecdysteroid agonists on two Drosophila imaginal disc cell lines. Cell Mol Life Sci 53:600–603.  https://doi.org/10.1007/s000180050078 CrossRefPubMedGoogle Scholar
  26. Crosby T, Evershed RP, Lewis D, Wigglesworth KP, Rees HH (1986) Identification of ecdysone 22-long-chain fatty acyl esters in newly laid eggs of the cattle tick Boophilus microplus. Biochem J 240:131–138.  https://doi.org/10.1042/bj2400131 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Davies TG, Dinan LN, Lockley WJ, Rees HH, Goodwin TW (1981) Formation of the A/B cis ring junction of ecdysteroids in the locust, Schistocerca gregaria. Biochem J 194:53–62.  https://doi.org/10.1042/bj1940053 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dees WH, Sonenshine DE, Breidling E (1984) Ecdysteroids in the American dog tick, Dermacentor variabilis (Acari: Ixodidae), during different periods of tick development. J Med Entomol 21:514–523.  https://doi.org/10.1093/jmedent/21.5.514 CrossRefPubMedGoogle Scholar
  29. Dees WH, Sonenshine DE, Breidling E (1985) Ecdysteroids in the camel tick, Hyalomma dromedarii (Acari: Ixodidae), and comparison with sex pheromone activity. J Med Entomol 22:22–27.  https://doi.org/10.1093/jmedent/22.1.22 CrossRefGoogle Scholar
  30. Diehl PA, Germond JE, Morici M (1982) Correlations between ecdysteroid titers and integument structure in nymphs of the tick, Amblyomma hebraeum Koch (Acarina: Ixodidae). Rev Suisse Zool 89:859–868CrossRefGoogle Scholar
  31. Dotson EM, Connat JL, Diehl PA (1991) Cuticle deposition and ecdysteroid titers during embryonic and larval development of the argasid tick Ornithodoros moubata (Murray, 1877, sensu Walton, 1962) (Ixodoidea:Argasidae). Gen Comp Endocr 82:386–400.  https://doi.org/10.1016/0016-6480(91)90314-V CrossRefPubMedGoogle Scholar
  32. Dotson EM, Connat JL, Diehl PA (1993) Metabolism of [3H]-ecdysone in embryos and larvae of the tick Ornithodoros moubata. Arch Insect Biochem 23:67–78.  https://doi.org/10.1002/arch.940230203 CrossRefGoogle Scholar
  33. Dotson EM, Connat JL, Diehl PA (1995) Ecdysteroid titre and metabolism and cuticle deposition during embryogenesis of the ixodid tick Amblyomma hebraeum (Koch). Comp Biochem Phys 110:155–166.  https://doi.org/10.1016/0305-0491(94)00140-P CrossRefGoogle Scholar
  34. Dunlop J, Alberti G (2007) The affinities of mites and ticks: a review. J Zool Syst Evol Res 46:1–18.  https://doi.org/10.1111/j.1439-0469.2007.00429.x CrossRefGoogle Scholar
  35. Egekwu N, Sonenshine DE, Bissingerb BW, Roe RM (2014) Transcriptome of the female synganglion of the black-legged tick Ixodes scapularis (Acari: Ixodidae) with comparison between Illumina and 454 systems. PLoS One 9:e102667.  https://doi.org/10.1371/journal.pone.0102667 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Enya S, Ameku T, Igarashi F, Iga M, Kataoka H, Shinoda T, Niwa R (2014) A halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behavior of cholesterol in Drosophila. Sci Rep 4:6586.  https://doi.org/10.1038/srep06586 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Enya S, Daimon T, Igarashi F, Kataoka H, Uchibori M, Sezutsu H, Shinoda T, Niwa R (2015) The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development. Insect Biochem Mol 61:1–7.  https://doi.org/10.1016/j.ibmb.2015.04.001 CrossRefGoogle Scholar
  38. Feldlaufer MF, Svoboda JA, Herbert EW Jr (1986) Makisterone A and 24-methylenecholesterol from the ovaries of the honey bee, Apis mellifera L. Experientia 42:200–201.  https://doi.org/10.1007/BF01952468 CrossRefGoogle Scholar
  39. Feldlaufer MF, Weirich GF, Imberski RB, Svoboda JA (1995) Ecdysteroid production in Drosophila melanogaster reared on defined diets. Insect Biochem Mol 25:709–712.  https://doi.org/10.1016/0965-1748(95)00009-K CrossRefGoogle Scholar
  40. Feyereisen R (2011) Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta 1814:19–28.  https://doi.org/10.1016/j.bbapap.2010.06.012 CrossRefPubMedGoogle Scholar
  41. Friesen KJ, Kaufman WR (2002) Quantification of vitellogenesis and its control by 20-hydroxyecdysone in the ixodid tick, Amblyomma hebraeum. J Insect Physiol 48:773–782.  https://doi.org/10.1016/S0022-1910(02)00107-5 CrossRefPubMedGoogle Scholar
  42. Friesen KJ, Kaufman WR (2004) Effects of 20-hydroxyecdysone and other hormones on egg development, and identification of a vitellin-binding protein in the ovary of the tick, Amblyomma hebraeum. J Insect Physiol 50:519–529.  https://doi.org/10.1016/j.jinsphys.2004.03.008 CrossRefPubMedGoogle Scholar
  43. Germond JE, Diehl PA, Morici M (1982) Correlations between integument structure and ecdysteroid titers in fifth-stage nymphs of the tick, Ornithodoros moubata (Murray, 1877; sensu Walton, 1962). Gen Comp Endocr 46:255–266.  https://doi.org/10.1016/0016-6480(82)90207-6 CrossRefPubMedGoogle Scholar
  44. Goto SG (2016) Physiological and molecular mechanisms underlying photoperiodism in the spider mite: comparisons with insects. J Comp Physiol B 186:969–984.  https://doi.org/10.1007/s00360-016-1018-9 CrossRefPubMedGoogle Scholar
  45. Grbić M, Van Leeuwen T, Clark RM et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492.  https://doi.org/10.1038/nature10640 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Guittard E, Blais C, Maria A, Parvy JP, Pasricha S, Lumb C, Lafont R, Daborn PJ, Dauphin-Villemant C (2011) CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev Biol 349:35–45.  https://doi.org/10.1016/j.ydbio.2010.09.023 CrossRefPubMedGoogle Scholar
  47. Guo X, Harmon MA, Laudet V, Mangelsdorf DJ, Palmer MJ (1997) Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.). Insect Biochem Mol 27:945–962.  https://doi.org/10.1016/S0965-1748(97)00075-1 CrossRefGoogle Scholar
  48. Guo X, Xu Q, Harmon MA, Jin X, Laudet V, Mangelsdorf DJ, Palmer MJ (1998) Isolation of two functional retinoid X receptor subtypes from the Ixodid tick, Amblyomma americanum (L.). Mol Cell Endocrinol 139:45–60.  https://doi.org/10.1016/S0303-7207(98)00073-2 CrossRefPubMedGoogle Scholar
  49. Hartfelder K, Feldlaufer MF (1997) Relationship of the neutral sterols and ecdysteroids of the parasitic mite, Varroa jacobsoni to those of the honey bee, Apis mellifera. J Insect Physiol 43:541–545.  https://doi.org/10.1016/S0022-1910(97)00005-X CrossRefPubMedGoogle Scholar
  50. Hentze JL, Moeller ME, Jørgensen AF, Bengtsson MS, Bordoy AM, Warren JT, Gilbert LI, Andersen O, Rewitz KF (2013) Accessory gland as a site for prothoracicotropic hormone controlled ecdysone synthesis in adult male insects. PLoS One 8:e55131.  https://doi.org/10.1371/journal.pone.0055131 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC (2013) Ecdysone receptors: from the Ashburner model to structural biology. Annu Rev Entomol 58:251–271.  https://doi.org/10.1146/annurev-ento-120811-153610 CrossRefPubMedGoogle Scholar
  52. Honda Y, Ishiguro W, Ogihara MH, Kataoka H, Taylor D (2017) Identification and expression of nuclear receptor genes and ecdysteroid titers during nymphal development in the spider Agelena silvatica. Gen Comp Endocr 247:183–198.  https://doi.org/10.1016/j.ygcen.2017.01.032 CrossRefPubMedGoogle Scholar
  53. Horigane M, Ogihara K, Nakajima Y, Shinoda T, Taylor D (2007) Cloning and expression of the ecdysteroid receptor during ecdysis and reproduction in females of the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Mol Biol 16:601–612.  https://doi.org/10.1111/j.1365-2583.2007.00754.x CrossRefPubMedGoogle Scholar
  54. Horigane M, Ogihara K, Nakajima Y, Taylor D (2008) Isolation and expression of the retinoid X receptor from last instar nymphs and adult females of the soft tick Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocr 156:298–311.  https://doi.org/10.1016/j.ygcen.2008.01.021 CrossRefPubMedGoogle Scholar
  55. Horigane M, Shinoda T, Honda H, Taylor D (2010) Characterization of a vitellogenin gene reveals two phase regulation of vitellogenesis by engorgement and mating in the soft tick Ornithodoros moubata (Acari: Argasidae). Insect Mol Biol 19:501–515.  https://doi.org/10.1111/j.1365-2583.2010.01007.x CrossRefPubMedGoogle Scholar
  56. Iga M, Kataoka H (2012) Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol Pharm Bull 35:838–843.  https://doi.org/10.1248/bpb.35.838 CrossRefPubMedGoogle Scholar
  57. Iga M, Smagghe G (2010) Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis. Peptides 31:456–467.  https://doi.org/10.1016/j.peptides.2009.08.002 CrossRefPubMedGoogle Scholar
  58. Iga M, Blais C, Smagghe G (2013) Study on ecdysteroid levels and gene expression of enzymes related to ecdysteroid biosynthesis in the larval testis of Spodoptera littoralis. Arch Insect Biochem 82:14–28.  https://doi.org/10.1002/arch.21068 CrossRefGoogle Scholar
  59. Ito Y, Yasuda A, Sonobe H (2008) Synthesis and phosphorylation of ecdysteroids during ovarian development in the silkworm, Bombyx mori. Zool Sci 25:721–727.  https://doi.org/10.2108/zsj.25.721 CrossRefPubMedGoogle Scholar
  60. James AM, Zhu XX, Oliver JH Jr (1997) Vitellogenin and ecdysteroid titers in Ixodes scapularis during vitellogenesis. J Parasitol 83:559–563CrossRefPubMedGoogle Scholar
  61. Jia S, Wan PJ, Zhou LT, Mu LL, Li GQ (2013) Molecular cloning and RNA interference-mediated functional characterization of a Halloween gene spook in the white-backed planthopper Sogatella furcifera. BMC Mol Biol 14:19.  https://doi.org/10.1186/1471-2199-14-19 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: II. Zygotic loci on the third chromosome. Roux Arch Dev Biol 193:283–295.  https://doi.org/10.1007/BF00848157 CrossRefGoogle Scholar
  63. Kaufman WR (1990) Effect of 20-hydroxyecdysone on the salivary glands of the male tick, Amblyomma hebraeum. Exp Appl Acarol 9:87–95.  https://doi.org/10.1007/BF01198986 CrossRefPubMedGoogle Scholar
  64. Kaufman WR (1991) Further investigations on the action of ecdysteroids on the salivary glands of the female tick Amblyomma americanum. Exp Appl Acarol 10:259–265.  https://doi.org/10.1007/BF0119865 CrossRefPubMedGoogle Scholar
  65. Komura-Kawa T, Hirota K, Shimada-Niwa Y, Yamauchi R, Shimell M, Shinoda T, Fukamizu A, O’Connor MB, Niwa R (2015) The Drosophila zinc finger transcription factor Ouija board controls ecdysteroid biosynthesis through specific regulation of spookier. PLoS Genet 1:e1005712.  https://doi.org/10.1371/journal.pgen.1005712 CrossRefGoogle Scholar
  66. Kong Y, Liu XP, Wan PJ, Shi XQ, Guo WC, Li GQ (2014) The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata. Insect Mol Biol 23:632–643.  https://doi.org/10.1016/0016-6480(84)90066-2 CrossRefPubMedGoogle Scholar
  67. Lafont R, Dauphin-Villemant C, Warren JT, Rees H (2005) 3.3. Ecdysteroid chemistry and biochemistry. In: Gilbert LI (ed) Comprehensive molecular insect science, vol 3. Endocrinology. Elsevier, Amsterdam, pp 125–195Google Scholar
  68. Lang M, Murat S, Clark AG, Gouppil G, Blais C, Matzkin LM, Guittard E, Yoshiyama-Yanagawa T, Kataoka H, Niwa R, Lafont R, Dauphin-Villemant C, Orgogozo V (2012) Mutations in the neverland gene turned Drosophila pachea into an obligate specialist species. Science 337:1658–1661.  https://doi.org/10.1126/science.1224829 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lavrynenko O, Rodenfels J, Carvalho M, Dye NA, Lafont R, Eaton S, Shevchenko A (2015) The ecdysteroidome of Drosophila: influence of diet and development. Development 142:3758–3768.  https://doi.org/10.1242/dev.124982 CrossRefPubMedGoogle Scholar
  70. Layalle S, Arquier N, Léopold P (2008) The TOR pathway couples nutrition and developmental timing in Drosophila. Dev Cell 15:568–577.  https://doi.org/10.1016/j.devcel.2008.08.003 CrossRefPubMedGoogle Scholar
  71. Li G, Niu JZ, Zotti M, Sun QZ, Zhu L, Zhang J, Liao CY, Dou W, Wei DD, Wang JJ, Smagghe G (2017) Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite (Panonychus citri). Insect Biochem Mol 87:136–146.  https://doi.org/10.1016/j.ibmb.2017.06.009 CrossRefGoogle Scholar
  72. Lindquist EE, Krantz W, Walter DE (2009) Classification. In: Krantz GW, Walter DE (eds) A manual of acarology. Texas Tech University Press, Lubbock, pp 97–103Google Scholar
  73. Lomas LO, Turner PC, Rees HH (1997) A novel neuropeptide-endocrine interaction controlling ecdysteroid production in ixodid ticks. Proc Biol Sci 264:589–596.  https://doi.org/10.1098/rspb.1997.0084 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lomas LO, Gelman D, Kaufman WR (1998) Ecdysteroid regulation of salivary gland degeneration in the ixodid tick, Amblyomma hebraeum: a reconciliation of in vivo and in vitro observations. Gen Comp Endocr 109:200–211.  https://doi.org/10.1006/gcen.1997.7020 CrossRefPubMedGoogle Scholar
  75. Maeda S, Nakashima A, Yamada R, Hara N, Fujimoto Y, Ito Y, Sonobe H (2008) Molecular cloning of ecdysone 20-hydroxylase and expression pattern of the enzyme during embryonic development of silkworm Bombyx mori. Comp Biochem Phys B 149:507–516.  https://doi.org/10.1016/j.cbpb.2007.11.015 CrossRefGoogle Scholar
  76. Mango C, Odhiambo IR, Galun R (1976) Ecdysone and the super tick. Nature 260:318–319CrossRefPubMedGoogle Scholar
  77. Mao H, Kaufman WR (1998) DNA binding properties of the ecdysteroid receptor in the salivary gland of the female ixodid tick, Amblyomma hebraeum. Insect Biochem Mol 28:947–957.  https://doi.org/10.1016/S0965-1748(98)00078-2 CrossRefGoogle Scholar
  78. Mao H, Kaufman WR (1999) Profile of the ecdysteroid hormone and its receptor in the salivary gland of the adult female tick, Amblyomma hebraeum. Insect Biochem Mol 29:33–42.  https://doi.org/10.1016/S0965-1748(98)00102-7 CrossRefGoogle Scholar
  79. Mao H, McBlain WA, Kaufman WR (1995) Some properties of the ecdysteroid receptor in the salivary gland of the ixodid tick, Amblyomma hebraeum. Gen Comp Endocr 99:340–348.  https://doi.org/10.1006/gcen.1995.1118 CrossRefPubMedGoogle Scholar
  80. Marchal E, Badisco L, Verlinden H, Vandersmissen T, Van Soest S, Van Wielendaele P, Vanden Broeck J (2011) Role of the Halloween genes, Spook and Phantom in ecdysteroidogenesis in the desert locust, Schistocerca gregaria. J Insect Physiol 57:1240–1248.  https://doi.org/10.1016/j.jinsphys.2011.05.009 CrossRefPubMedGoogle Scholar
  81. Marchal E, Verlinden H, Badisco L, Van Wielendaele P, Vanden Broeck J (2012) RNAi-mediated knockdown of Shade negatively affects ecdysone-20-hydroxylation in the desert locust, Schistocerca gregaria. J Insect Physiol 58:890–896.  https://doi.org/10.1016/j.jinsphys.2012.03.013 CrossRefPubMedGoogle Scholar
  82. Miyashita M, Matsushita K, Nakamura S, Akahane S, Nakagawa Y, Miyagawa H (2011) LC/MS/MS identification of 20-hydroxyecdysone in a scorpion (Liocheles australasiae) and its binding affinity to in vitro-translated molting hormone receptors. Insect Biochem Mol 41:932–937.  https://doi.org/10.1016/j.ibmb.2011.09.002 CrossRefGoogle Scholar
  83. Mykles DL (2011) Ecdysteroid metabolism in crustaceans. J Steroid Biochem 127:196–203.  https://doi.org/10.1016/j.jsbmb.2010.09.001 CrossRefGoogle Scholar
  84. Namiki T, Niwa R, Sakudoh T, Shirai K, Takeuchi H, Kataoka H (2005) Cytochrome P450 CYP307A1/Spook: a regulator for ecdysone synthesis in insects. Biochem Biophys Res Commu 337:367–374.  https://doi.org/10.1016/j.bbrc.2005.09.043 CrossRefGoogle Scholar
  85. Neese PA, Sonenshine DE, Kallapur VL, Apperson CS, Roe RM (2000) Absence of insect juvenile hormones in the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae), and Ornithodoros perkeri Cooley (Acari: argasidae). J Insect Physiol 46:477–490.  https://doi.org/10.1016/S0022-1910(99)00134-1 CrossRefPubMedGoogle Scholar
  86. Nicolson S, Denton D, Kumar S (2015) Ecdysone-mediated programmed cell death in Drosophila. Int J Dev Biol 59:23–32.  https://doi.org/10.1387/ijdb.150055sk CrossRefGoogle Scholar
  87. Niwa R, Niwa YS (2014) Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 78:1283–1292.  https://doi.org/10.1080/09168451.2014.942250 CrossRefPubMedGoogle Scholar
  88. Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y, Kataoka H (2004) CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem 279:35942–35949.  https://doi.org/10.1074/jbc.M404514200 CrossRefPubMedGoogle Scholar
  89. Niwa R, Sakudoh T, Namiki T, Saida K, Fujimoto Y, Kataoka H (2005) The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol Biol 14:563–571.  https://doi.org/10.1111/j.1365-2583.2005.00587.x CrossRefPubMedGoogle Scholar
  90. Niwa R, Namiki T, Ito K, Shimada-Niwa Y, Kiuchi M, Kawaoka S, Kayukawa T, Banno Y, Fujimoto Y, Shigenobu S, Kobayashi S, Shimada T, Katsuma S, Shinoda T (2010) Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the ‘black box’ of the ecdysteroid biosynthesis pathway. Development 137:1991–1999.  https://doi.org/10.1242/dev.045641 CrossRefPubMedGoogle Scholar
  91. Ogihara MH, Taylor D (2014) Female reproductive system: anatomy, physiology, and molecular biology. In: Sonenshine DE, Roe RM (eds) Tick biology, vol 1. Oxford University Press, Oxford, pp 416–448Google Scholar
  92. Ogihara K, Horigane M, Nakajima Y, Moribayashi A, Taylor D (2007) Ecdysteroid hormone titer and its relationship to vitellogenesis in the soft tick, Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocr 150:371–380.  https://doi.org/10.1016/j.ygcen.2006.09.007 CrossRefPubMedGoogle Scholar
  93. Ogihara MH, Hikiba J, Suzuki Y, Taylor D, Kataoka H (2015) Ovarian ecdysteroidogenesis in both immature and mature stages of an Acari, Ornithodoros moubata. PLoS One 10:e0124953.  https://doi.org/10.1371/journal.pone.0124953 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Ogihara MH, Ikeda H, Yamada N, Hikiba J, Nakaoka T, Fujimoto Y, Suzuki Y, Saito K, Mizoguchi A, Kataoka H (2017) Identification of ecdysteroidogenic enzyme genes and their expression during pupal diapause in the cabbage armyworm, Mamestra brassicae. Insect Mol Biol 26:286–297.  https://doi.org/10.1111/imb.12291 CrossRefPubMedGoogle Scholar
  95. Oliver JH Jr (1986) Relationship among feeding, gametogenesis, mating and syngamy in ticks. In: Borovsky D, Spielman A (eds) Host regulated development mechanisms in vector arthropods. University of Florida press, Vero Beach, pp 93–99Google Scholar
  96. Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, Jarcho M, Warren JT, Marques G, Shimell MJ, Gilbert LI, O’Connor MB (2006) Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol 298:555–570.  https://doi.org/10.1016/j.ydbio.2006.07.023 CrossRefPubMedGoogle Scholar
  97. Ono H, Morita S, Asakura I, Nishida R (2012) Conversion of 3-oxo steroids into ecdysteroids triggers molting and expression of 20E-inducible genes in Drosophila melanogaster. Biochem Biophy Res Commu 421:561–566.  https://doi.org/10.1016/j.bbrc.2012.04.045 CrossRefGoogle Scholar
  98. Palmer MJ, Warren JT, Jin X, Guo X, Gilbert LI (2002) Developmental profiles of ecdysteroids, ecdysteroid receptor mRNAs and DNA binding properties of ecdysteroid receptors in the ixodid tick Amblyomma americanum (L.). Insect Biochem Mol 32:465–476.  https://doi.org/10.1016/S0965-1748(01)00124-2 CrossRefGoogle Scholar
  99. Petryk A, Warren JT, Marques G, Jarcho MP, Gilbert LI, Kahler J, Parvy JP, Li Y, Dauphin-Villemant C, O’Connor MB (2003) Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. P Natl Acad Sci USA 100:13773–13778.  https://doi.org/10.1073/pnas.2336088100 CrossRefGoogle Scholar
  100. Pound JM, Oliver JH Jr (1979) Juvenile hormone: evidence of its role in the reproduction of ticks. Science 206:355–357.  https://doi.org/10.1126/science.206.4416.355 CrossRefPubMedGoogle Scholar
  101. Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendena WG, Tobe SS, Hui JH (2015) How did arthropod sesquiterpenoids and ecdysteroids arise? Comparison of hormonal pathway genes in noninsect arthropod genomes. Genome Biol Evol 7:1951–1959.  https://doi.org/10.1093/gbe/evv120 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Redfern CP (1984) Evidence for the presence of makisterone A in Drosophila larvae and the secretion of 20-deoxymakisterone A by the ring gland. Proc Natl Acad Sci USA 81:5643–5647.  https://doi.org/10.1073/pnas.81.18.5643 CrossRefPubMedGoogle Scholar
  103. Rees HH (2004) Hormonal control of tick development and reproduction. Parasitology 129:S127–S143CrossRefPubMedGoogle Scholar
  104. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083.  https://doi.org/10.1038/nature08742 CrossRefPubMedGoogle Scholar
  105. Rewitz KF, Gilbert LI (2008) Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications. BMC Evol Biol 8:60.  https://doi.org/10.1186/1471-2148-8-60 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Rewitz KF, Rybczynski R, Warren JT, Gilbert LI (2006a) The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone. Biochem Soc Trans 34:1256–1260.  https://doi.org/10.1042/BST0341256 CrossRefPubMedGoogle Scholar
  107. Rewitz KF, Rybczynski R, Warren JT, Gilbert LI (2006b) Developmental expression of Manduca shade, the P450 mediating the final step in molting hormone synthesis. Mol Cell Endocrinol 247:166–174.  https://doi.org/10.1016/j.mce.2005.12.053 CrossRefPubMedGoogle Scholar
  108. Rewitz KF, Rybczynski R, Warren JT, Gilbert LI (2006c) Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. Insect Biochem Mol 36:188–199.  https://doi.org/10.1016/j.ibmb.2005.12.002 CrossRefGoogle Scholar
  109. Rewitz KF, Yamanaka N, O’Connor MB (2010) Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev Cell 19:895–902.  https://doi.org/10.1016/j.devcel.2010.10.021 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Riga M, Bajda S, Themistokleous C, Papadaki S, Palzewicz M, Dermauw W, Vontas J, Leeuwen TV (2017) The relative contribution of target site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci Rep 7:9202.  https://doi.org/10.1038/s41598-017-09054-y CrossRefPubMedPubMedCentralGoogle Scholar
  111. Saito J, Kimura R, Kaieda Y, Nishida R, Ono H (2016) Characterization of candidate intermediates in the black box of the ecdysone biosynthetic pathway in Drosophila melanogaster: evaluation of molting activities on ecdysteroid-defective larvae. J Insect Physiol 93–94:94–104.  https://doi.org/10.1016/j.jinsphys.2016.09.012 CrossRefPubMedGoogle Scholar
  112. Sakagami Y, Taki K, Matsuhisa T, Marumo S (1992) Identification of 2-deoxyecdysone from the mite, Tyrophagus putrescentiae. Experientia 48:793–795.  https://doi.org/10.1007/BF02124306 CrossRefGoogle Scholar
  113. Sánchez-Higueras C, Sotillos S, Castelli-Gair Hombría J (2014) Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Curr Biol 24:76–81.  https://doi.org/10.1016/j.cub.2013.11.010 CrossRefPubMedGoogle Scholar
  114. Sandlund L, Kongshaug H, Horsberg TE, Male R, Nilsen F, Dalvin S (2018) Identification and characterization of the ecdysone biosynthetic genes neverland, disembodied and shade in the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae). PLoS One 13:e0191995.  https://doi.org/10.1371/journal.pone.0191995 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sankhon N, Lockey T, Rosell RC, Rothschild M, Coons L (1999) Effect of methoprene and 20-hydroxyecdysone on vitellogenin production in cultured fat bodies and backless explants from unfed female Dermacentor variabilis. J Insect Physiol 45:755–761.  https://doi.org/10.1016/S0022-1910(99)00054-2 CrossRefPubMedGoogle Scholar
  116. Sathapondecha P, Panyim S, Udomkit A (2017) An essential role of Rieske domain oxygenase Neverland in the molting cycle of black tiger shrimp, Penaeus monodon. Comp Biochem Phys A 213:11–19.  https://doi.org/10.1016/j.cbpa.2017.08.004 CrossRefGoogle Scholar
  117. Seixas A, Friesen KJ, Kaufman WR (2008) Effect of 20-hydroxyecdysone and haemolymph on oogenesis in the ixodid tick Amblyomma hebraeum. J Insect Physiol 54:1175–1183.  https://doi.org/10.1016/j.jinsphys.2008.05.004 CrossRefPubMedGoogle Scholar
  118. Shimano S (2018) The revised higher classification of Acari. J Acarol Soc Jpn 27:51–68.  https://doi.org/10.2300/acari.27.51 (in Japanese with English abstract) CrossRefGoogle Scholar
  119. Shyamal S, Das S, Guruacharya A, Mykles DL, Durica DS (2018) Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci Rep 8:7307.  https://doi.org/10.1038/s41598-018-25368-x CrossRefPubMedPubMedCentralGoogle Scholar
  120. Šimo L, Slovák M, Park Y, Zitnan D (2009) Identification of a complex peptidergic neuroendocrine network in the hard tick, Rhipicephalus appendiculatus. Cell Tissue Res 335:639–655.  https://doi.org/10.1007/s00441-008-0731-4 CrossRefPubMedGoogle Scholar
  121. Sin YW, Kenny NJ, Qu Z, Chan KW, Chan KW, Cheong SP, Leung RW, Chan TF, Bendena WG, Chu KH, Tobe SS, Hui JH (2015) Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. Gen Comp Endocr 214:167–176.  https://doi.org/10.1016/j.ygcen.2014.07.018 CrossRefPubMedGoogle Scholar
  122. Sonenshine DE, Boland LM, Beveridge M, Upchurch BT (1986) Metabolism of ecdysone and 20-hydroxyecdysone in the camel tick, Hyalomma dromedarii (Acari: Ixodidae). J Med Entomol 23:630–650.  https://doi.org/10.1093/jmedent/23.6.630 CrossRefPubMedGoogle Scholar
  123. Sonobe H, Yamada R (2004) Ecdysteroids during early embryonic development in silkworm Bombyx mori: metabolism and functions. Zool Sci 21:503–516.  https://doi.org/10.2108/zsj.21.503 CrossRefPubMedGoogle Scholar
  124. Stauffer A, Connat J (1990) Anteroposterior gradient during nymphal-adult moulting cycle of the tropical bont tick, Amblyomma variegatum (Acarina: Ixodidae): correlation between ecdysteroid titers and integument structure. Roux Arch Dev Biol 198:309–321.  https://doi.org/10.1007/BF00383769 CrossRefPubMedGoogle Scholar
  125. Sumiya E, Ogino Y, Toyota K, Miyakawa H, Miyagawa S, Iguchi T (2016) Neverland regulates embryonic moltings through the regulation of ecdysteroid synthesis in the water flea Daphnia magna, and may thus act as a target for chemical disruption of molting. J Appl Toxicol 36:1476–1485.  https://doi.org/10.1002/jat.3306 CrossRefPubMedGoogle Scholar
  126. Sun W, Shen YH, Qi DW, Xiang ZH, Zhang Z (2012) Molecular cloning and characterization of ecdysone oxidase and 3-dehydroecdysone-3α-reductase involved in the ecdysone inactivation pathway of silkworm, Bombyx mori. Int J Biol Sci 8:125–138CrossRefPubMedGoogle Scholar
  127. Svoboda JA, Thompson MJ, Herbert EW Jr, Shortino TJ, Szczepanik-Vanleeuwen PA (1982) Utilization and metabolism of dietary sterols in the honey bee and the yellow fever mosquito. Lipids 17:220–225.  https://doi.org/10.1007/BF02535107 CrossRefPubMedGoogle Scholar
  128. Sztal T, Chung H, Gramzow L, Daborn PJ, Batterham P, Robin C (2007) Two independent duplications forming the Cyp307a genes in Drosophila. Insect Biochem Mol 37:1044–1053.  https://doi.org/10.1016/j.ibmb.2007.05.017 CrossRefGoogle Scholar
  129. Takeuchi H, Chen JH, O’Reilly DR, Rees HH, Turner PC (2000) Regulation of ecdysteroid signaling: molecular cloning, characterization and expression of 3-dehydroecdysone 3 alpha-reductase, a novel eukaryotic member of the short-chain dehydrogenases/reductases superfamily from the cotton leafworm, Spodoptera littoralis. Biochem J 349:239–245.  https://doi.org/10.1042/bj3490239 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Takeuchi H, Chen JH, O’Reilly DR, Turner PC, Rees HH (2001) Regulation of ecdysteroid signaling: cloning and characterization of ecdysone oxidase: a novel steroid oxidase from the cotton leafworm, Spodoptera littoralis. J Biol Chem 276:26819–26828.  https://doi.org/10.1074/jbc.M104291200 CrossRefPubMedGoogle Scholar
  131. Takeuchi H, Rigden DJ, Ebrahimi B, Turner PC, Rees HH (2005) Regulation of ecdysteroid signaling during Drosophila development: identification, characterization and modelling of ecdysone oxidase, an enzyme involved in control of ligand concentration. Biochem J 389:637–645.  https://doi.org/10.1042/BJ20050498 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Tanaka Y (2011) Recent topics on the regulatory mechanism of ecdysteroidogenesis by the prothoracic glands in insects. Front Endocrinol 2:107.  https://doi.org/10.3389/fendo.2011.00107 CrossRefGoogle Scholar
  133. Taylor D, Sonenshine DE, Phillips JS (1991a) Ecdysteroids as a component of the genital sex pheromone in two species of hard ticks, Dermacentor variabilis (Say) and Dermacentor andersoni Stiles (Acari: Ixodidae). Exp Appl Acarol 12:275–296.  https://doi.org/10.1007/BF01193473 CrossRefGoogle Scholar
  134. Taylor D, Chinzei Y, Ando K (1991b) Vitellogenin synthesis, processing and hormonal regulation in the tick, Ornithodoros parkeri (Acari: Argasidae). Insect Biochem 21:723–733.  https://doi.org/10.1016/0020-1790(91)90113-S CrossRefGoogle Scholar
  135. Taylor D, Chinzei Y, Miura K, Ando K (1992) Effects of precocenes on vitellogenesis in the adult female tick, Ornithodoros moubata (Acari: Argasidae). Exp Appl Acarol 14:123–136.  https://doi.org/10.1007/BF01219105 CrossRefPubMedGoogle Scholar
  136. Thompson DM, Khalil SM, Jeffers LA, Ananthapadmanaban U, Sonenshine DE, Mitchell RD, Osgood CJ, Apperson CS, Roe RM (2005) In vivo role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, Dermacentor variabilis (Say). J Insect Physiol 51:1105–1116.  https://doi.org/10.1016/j.jinsphys.2005.05.011 CrossRefPubMedGoogle Scholar
  137. Thummel CS (2001) Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev Cell 1:453–465.  https://doi.org/10.1016/S1534-5807(01)00060-0 CrossRefPubMedGoogle Scholar
  138. Tom M, Manfrin C, Giulianini PG, Pallavicini A (2013) Crustacean oxi-reductases protein sequences derived from a functional genomic project potentially involved in ecdysteroid hormones metabolism—a starting point for function examination. Gen Comp Endocr 194:71–80.  https://doi.org/10.1016/j.ygcen.2013.09.003 CrossRefPubMedGoogle Scholar
  139. Uchibori-Asano M, Kayukawa T, Sezutsu H, Shinoda T, Daimon T (2017) Severe developmental timing defects in the prothoracicotropic hormone (PTTH)-deficient silkworm, Bombyx mori. Insect Biochem Mol 87:14–25.  https://doi.org/10.1016/j.ygcen.2013.09.003 CrossRefGoogle Scholar
  140. Ullah SA, Kaufman WR (2014) Salivary gland degeneration and ovary development in the Rocky Mountain wood tick, Dermacentor andersoni Stiles (Acari: Ixodidae). II. Determination of the ‘critical weight’. Ticks Tick-Borne Dis 5:516–522.  https://doi.org/10.1016/j.ttbdis.2014.03.007 CrossRefPubMedGoogle Scholar
  141. Uryu O, Ameku T, Niwa R (2015) Recent progress in understanding the role of ecdysteroids in adult insects: germline development and circadian clock in the fruit fly Drosophila melanogaster. Zool Lett 1:32.  https://doi.org/10.1186/s40851-015-0031-2 CrossRefGoogle Scholar
  142. Ventura T, Bose U, Fitzgibbon QP, Smith GG, Shaw PN, Cummins SF, Elizur A (2017) CYP450 s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development. J Steroid Biochem 171:262–269.  https://doi.org/10.1016/j.jsbmb.2017.04.007 CrossRefGoogle Scholar
  143. Wang WL, Spaziani E, Huang ZH, Charkowski DM, Li Y, Liu XM (2000) Ecdysteroid hormones and metabolites of the stone crab, Menippe mercenaria. J Exp Zool 286:725–735.  https://doi.org/10.1002/(SICI)1097-010X(20000601)286:7%3C725:AID-JEZ7%3E3.0.CO;2-N CrossRefPubMedGoogle Scholar
  144. Warren JT, Petryk A, Marques G, Jarcho M, Parvy JP, Dauphin-Villemant C, O’Connor MB, Gilbert LI (2002) Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc Natl Acad Sci USA 99:11043–11048.  https://doi.org/10.1073/pnas.162375799 CrossRefPubMedGoogle Scholar
  145. Warren JT, Petryk A, Marques G, Parvy JP, Shinoda T, Itoyama K, Kobayashi J, Jarcho M, Li Y, O’Connor MB, Dauphin-Villemant C, Gilbert LI (2004) Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem Mol 34:991–1010.  https://doi.org/10.1016/j.ibmb.2004.06.009 CrossRefGoogle Scholar
  146. Warren JT, O’Connor MG, Gilbert LI (2009) Studies on the black box: incorporation of 3-oxo-7-dehydrocholesterol into ecdysteroids by Drosophila melanogaster and Manduca sexta. Insect Biochem Mol 39:677–687.  https://doi.org/10.1016/j.ibmb.2009.08.004 CrossRefGoogle Scholar
  147. Weiss BL, Kaufman WT (2001) The relationship between ‘critical weight’ and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum. J Insect Physiol 47:1261–1267.  https://doi.org/10.1016/S0022-1910(01)00112-3 CrossRefPubMedGoogle Scholar
  148. Wigglesworth KP, Lewis D, Rees HH (1985) Ecdysteroid titer and metabolism to novel apolar derivatives in the adult females Boophilus microplus (Ixodidae). Arch Insect Biochem 2:39–54.  https://doi.org/10.1002/arch.940020105 CrossRefGoogle Scholar
  149. Wright JE (1969) Hormonal termination of larval diapause in Dermacentor albipictus. Science 163:390–391.  https://doi.org/10.1126/science.163.3865.390 CrossRefPubMedGoogle Scholar
  150. Xie X, Liu Z, Liu M, Tao T, Shen X, Zhu D (2016) Role of Halloween genes in ecdysteroids biosynthesis of the swimming crab (Portunus trituberculatus): implications from RNA interference and eyestalk ablation. Comp Biochem Physiol A 199:105–110.  https://doi.org/10.1016/j.cbpa.2016.06.001 CrossRefGoogle Scholar
  151. Yamada R, Sonobe H (2003) Purification, kinetic characterization, and molecular cloning of a novel enzyme ecdysteroid-phosphate phosphatase. J Biol Chem 278:26365–26373.  https://doi.org/10.1074/jbc.M304158200 CrossRefPubMedGoogle Scholar
  152. Yamanaka N, Honda N, Osato N, Niwa R, Mizoguchi A, Kataoka H (2007) Differential regulation of ecdysteroidogenic P450 gene expression in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 71:2808–2814.  https://doi.org/10.1271/bbb.70420 CrossRefPubMedGoogle Scholar
  153. Yamanaka N, Marqués G, O’Connor MB (2015) Vesicle-mediated steroid hormone secretion in Drosophila melanogaster. Cell 163:907–919.  https://doi.org/10.1016/j.cell.2015.10.022 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Yamazaki Y, Kiuchi M, Takeuchi H, Kubo T (2011) Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. Insect Biochem Mol 41:283–293.  https://doi.org/10.1016/j.ibmb.2011.01.005 CrossRefGoogle Scholar
  155. Yoshiyama T, Namiki T, Mita K, Kataoka H, Niwa R (2006) Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development 133:2565–2574.  https://doi.org/10.1242/dev.02428 CrossRefPubMedGoogle Scholar
  156. Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, Shiomi K, Sasakura Y, Takahashi S, Asashima M, Kataoka H, Niwa R (2011) The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J Biol Chem 286:25756–25762.  https://doi.org/10.1074/jbc.M111.244384 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Yu X, Zhou Y, Cao J, Zhang H, Gong H, Zhou J (2017) Caspase-1 participates in apoptosis of salivary glands in Rhipicephalus haemaphysaloides. Parasite Vector 10:225.  https://doi.org/10.1186/s13071-017-2161-1 CrossRefGoogle Scholar
  158. Zhu XX, Oliver JH Jr, Dotson EM (1991) Epidermis as the source of ecdysone in an argasid tick. Proc Natl Acad Sci USA 88:3744–3747.  https://doi.org/10.1073/pnas.88.9.3744 CrossRefPubMedGoogle Scholar
  159. Zhu XX, Oliver JH Jr, Dotson EM, Ren HL (1994) Correlation between ecdysteroids and cuticulogenesis in nymphs of the tick Ornithodoros parkeri (Acari: Argasidae). J Med Entomol 31:479–485.  https://doi.org/10.1093/jmedent/31.3.479 CrossRefPubMedGoogle Scholar
  160. Zhu J, Khalil SM, Mitchell RD, Bissinger BW, Egekwu N, Sonenshine DE, Roe RM (2016) Mevalonate-farnesal biosynthesis in ticks: comparative synganglion transcriptomics and a new perspective. PLoS One 11:e0141084.  https://doi.org/10.1371/journal.pone.0141084 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2019

Authors and Affiliations

  1. 1.Institute of Livestock and Grassland Science, NAROTsukubaJapan
  2. 2.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan

Personalised recommendations