Applied Entomology and Zoology

, Volume 54, Issue 1, pp 21–29 | Cite as

Vibrations in hemipteran and coleopteran insects: behaviors and application in pest management

  • Takuma TakanashiEmail author
  • Nami Uechi
  • Haruki Tatsuta


Many groups of insects utilize substrate-borne vibrations for communication. They display various behaviors in response to vibrations in sexual and social communication and in predator–prey interactions. Although the number of reports on communication and behaviors using vibrations has continued to increase across various insect orders, there are several studies of the exploitation of vibrations for pest management in Hemiptera and Coleoptera. Here, we review the studies of behaviors and communication using vibrations in hemipteran and coleopteran insects. For instance, pentatomid bugs display species- and sex-specific vibrational signals during courtship, whereas cerambycid beetles show startle responses to vibrations in the context of predator–prey interactions. Concepts and case studies in pest management using vibrations—especially regarding the disruption of communication and behavior—are also presented.


Vibrational signals Communication Pest control Behavioral disruption Sense organ 



We thank H. Nishino for the drawing of chordotonal organs in P. stali, K. Honda, and members of Shindou unit for kind cooperation during studies of SIP project. Thanks are also due to two anonymous reviewers for the helpful comments of this manuscript and editors for kind handling of this special issue, ‘Behavioral control and pest management using vibrations’. This work was partly supported by Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), “Technologies for creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO), and by Narishige Zoological Science Award.


  1. Acheampong S, Mitchell BK (1997) Quiescence in the Colorado potato beetle, Leptinotarsa decemlineata. Entomol Exp Appl 82:83–89CrossRefGoogle Scholar
  2. Breidbach O (1986) Studies on the stridulation of Hylotrupes bajulus (L.) (Cerambycidae, Coleoptera): communication through support vibration-morphology and mechanics of the signal. Behav Proc 12:169–186CrossRefGoogle Scholar
  3. Claridge MF, Morgan JC, Moulds MS (1999) Substrate-transmitted acoustic signals of the primitive cicada, Tettigarcta crinita Distant (Hemiptera: Cicadoidea: Tettigarctidae). J Nat Hist 33:1831–1834CrossRefGoogle Scholar
  4. Cocroft RB (1996) Insect vibrational defence signals. Nature 382:679–680CrossRefGoogle Scholar
  5. Cocroft RB, Rodríguez R (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334CrossRefGoogle Scholar
  6. Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Ann Rev Entomol 48:29–50CrossRefGoogle Scholar
  7. Čokl A, Gogala A, Blaževič A (1978) Principles of sound recognition in three Pentatomide bug species (Heteroptera). Biol Vestn 26:81–94Google Scholar
  8. Čokl A, Virant-Doberlet M, Mcdowell A (1999) Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim Behav 58:1277–1283CrossRefGoogle Scholar
  9. Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol Entomol 25:196–205CrossRefGoogle Scholar
  10. Djemai I, Casas J, Magal C (2004) Parasitoid foraging decisions mediated by artificial vibrations. Anim Behav 67:567–571CrossRefGoogle Scholar
  11. Eben A, Mühlethaler R, Gross J, Hoch H (2014) First evidence of acoustic communication in the pear psyllid Cacopsylla pyri L. (Hemiptera: Psyllidae). J Pest Sci 88:87–95CrossRefGoogle Scholar
  12. Endo J, Numata H (2017) Effects of embryonic responses to clutch mates on egg hatching patterns of Pentatomidae (Heteroptera). Physiol Entomol 42:412–417CrossRefGoogle Scholar
  13. Endo J, Takanashi T, Mukai H, Numata H (2018) Egg-cracking vibration as a cue for stink bug siblings to synchronize hatching. Curr Biol. Google Scholar
  14. Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7:e32954CrossRefGoogle Scholar
  15. Field LH, Matheson T (1998) Chordotonal organs in insects. Adv Insect Physiol 27:1–228CrossRefGoogle Scholar
  16. Fleming AJ, Lindeman AA, Carroll AL, Yack JE (2013) Acoustics of the mountain pine beetle (Dendroctonus ponderosae) (Curculionidae, Scolytinae): sonic, ultrasonic, and vibration characteristics. Can J Zool 91:235–244CrossRefGoogle Scholar
  17. Gish M, Dafni A, Inbar M (2012) Young aphids avoid erroneous dropping when evading mammalian herbivores by combining input from two sensory modalities. PLoS ONE 7:e32706CrossRefGoogle Scholar
  18. Gogala M (1984) Vibration producing structures and songs of terrestrial Heteroptera as systematic character. Biol Vestn 32:19–36Google Scholar
  19. Gogala M (1990) Distribution of low frequency vibrational songs in local Heteroptera. Scopolia Suppl 1:125–132Google Scholar
  20. Goulson D, Birch MC, Wyatt TD (1994) Mate location in the deathwatch beetle, Xestobium rufovillosum De Geer (Anobiidae): orientation to substrate vibrations. Anim Behav 47:899–907CrossRefGoogle Scholar
  21. Greenfield MD (2002) Signalers and receivers. Oxford University Press, New YorkGoogle Scholar
  22. Guedes RNC, Yack JE (2016) Shaking youngsters and shaken adults: female beetles eavesdrop on larval seed vibrations to make egg-laying decisions. PLoS ONE 11:e0150034CrossRefGoogle Scholar
  23. Hall DG, Richardson ML, Ammar ED, Halbert SE (2013) Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol Exp Appl 146:207–223CrossRefGoogle Scholar
  24. Hanrahan SA, Kirchner WH (1994) Acoustic orientation and communication in desert tenebrionid beetles in sand dunes. Ethology 97:26–32CrossRefGoogle Scholar
  25. Hartbauer M (2010) Collective defense of Aphis nerii and Uroleucon hypochoeridis (Homoptera, Aphididae) against natural enemies. PLoS ONE 5:e10417CrossRefGoogle Scholar
  26. Hill PSM (2008) Vibrational communication in animals. Harvard University Press, CambridgeGoogle Scholar
  27. Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214Google Scholar
  28. Hoch H, Deckert J, Wessel A (2006) Vibrational signalling in a Gondwanan relict insect (Hemiptera: Coleorrhyncha: Peloridiidae). Biol Lett 2:222–224CrossRefGoogle Scholar
  29. Hoch H, Mühlethaler R, Wachmann E, Stelbrink B, Wessel A (2011) Celebenna thomarosa gen. n., sp. n. (Hemiptera, Fulgoromorpha, Cixiidae, Bennini) from Indonesia: Sulawesi with notes on its ecology and behaviour. Dtsch Entomol Z 58:241–250CrossRefGoogle Scholar
  30. Hosomi A (1996) Effect of vibration to the infestation of Apriona japonica (Thomson) (Coleoptera: Cerambycidae) adults on the fig. In: Proceedings of Japan informal group meeting on human response to vibration held at the Hokkaido safety and health service, pp 25–34Google Scholar
  31. Ichikawa T (1976) Mutual communication by substrate vibrations in the mating behavior of planthoppers (Homoptera: Delphacidae). Appl Entomol Zool 11:8–21CrossRefGoogle Scholar
  32. Ichikawa T, Ishii S (1974) Mating signal of the brown planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae): vibration of the substrate. Appl Entomol Zool 9:196–198CrossRefGoogle Scholar
  33. Kanmiya K (1996) Discovery of male acoustic signals in the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol Zool 31:255–262CrossRefGoogle Scholar
  34. Kanmiya K (2006) Mating behaviour and vibratory signals in whiteflies (Hemiptera: Aleyrodidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor and Francis, London, pp 365–379Google Scholar
  35. Kanmiya K, Sonobe R (2002) Records of two citrus pest whiteflies in Japan with special reference to their mating sounds (Homoptera: Aleyrodidae). Appl Entomol Zool 37:487–495CrossRefGoogle Scholar
  36. Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531CrossRefGoogle Scholar
  37. Kishi M, Takanashi T (2019) Tonic immobility and startle responses induced by substrate-borne vibrations in the sap beetle, Phenolia (Lasiodites) picta (Coleoptera: Nitidulidae). Jpn J Appl Entomol Zool (In press) (In Japanese with English abstract) Google Scholar
  38. Kiyotake H, Matsumoto H, Nakayama S, Sakai M, Miyatake T, Ryuda M, Hayakawa Y (2014) Gain of long tonic immobility behavioral trait causes the red flour beetle to reduce anti-stress capacity. J Insect Physiol 60:92–97CrossRefGoogle Scholar
  39. Kobayashi F, Yamane A, Ikeda T (1984) The Japanese pine sawyer beetle as the vector of pine wilt disease. Ann Rev Entomol 29:115–135CrossRefGoogle Scholar
  40. Koczor S, Čokl A (2015) Percussion signals of Lygus rugulipennis Poppius (Heteroptera: Miridae). Cent Eur J Biol 9:543–549Google Scholar
  41. Kojima W, Ishikawa Y, Takanashi T (2012a) Deceptive vibratory communication: pupae of a beetle exploit the freeze response of larvae to protect themselves. Biol Lett 8:717–720CrossRefGoogle Scholar
  42. Kojima W, Ishikawa Y, Takanashi T (2012b) Pupal vibratory signals of a group-living beetle that deter larvae: are they mimics of predator cue? Commun Integr Biol 5:262–264CrossRefGoogle Scholar
  43. Kojima W, Takanashi T, Ishikawa Y (2012c) Vibratory communication in the soil: pupal signals deter larval intrusion in a group-living beetle Trypoxylus dichotoma. Behav Ecol Sociobiol 66:171–179CrossRefGoogle Scholar
  44. Kon M, Oe A, Numata H, Hidaka T (1988) Comparison of the mating behavior between two sympatric species Nezara antennata and N. viridula (Heteroptera: Pentatomidae) with special reference to sound emission. J Ethol 6:91–98CrossRefGoogle Scholar
  45. Lazzari C, Manrique G, Schilman P (2006) Vibratory communication in Triatominae (Heteroptera: Reduviidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor and Francis, London, pp 297–304Google Scholar
  46. Liao YC, Yang MM (2017) First evidence of vibrational communication in Homotomidae (Psylloidea) and comparison of substrate-borne signals of two allied species of the genus Macrohomotoma Kuwayama. J Insect Behav 30:567–581CrossRefGoogle Scholar
  47. Lighton JRB (1987) Cost of tokking: the energetics of substrate communication in the tok-tok beetle, Psammodes striatus. J Comp Physiol B 157:11–20CrossRefGoogle Scholar
  48. Lubanga UK, Guédot C, Percy DM, Steinbauer MJ (2014) Semiochemical and vibrational cues and signals mediating mate finding and courtship in Psylloidea (Hemiptera): a synthesis. Insects 5:577–595CrossRefGoogle Scholar
  49. Lujo S, Hartman E, Norton K, Pregmon E, Rohde B, Mankin RW (2016) Disrupting mating behavior of Diaphorina citri (Liviidae). J Econ Entomol 109:2373–2379CrossRefGoogle Scholar
  50. Mazzoni V, Presern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413CrossRefGoogle Scholar
  51. Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281CrossRefGoogle Scholar
  52. Mitomi M, Ichikawa T, Okamoto H (1984) Morphology of the vibration-producing organ in adult rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool 19:407–417CrossRefGoogle Scholar
  53. Mizutani N (2006) Pheromones of male stink bugs and their attractiveness to their parasitoids. Jpn J Appl Entomol Zool 50:87–99 (In Japanese with English summary) CrossRefGoogle Scholar
  54. Mukai H (2016) Parental regulation for hatching plasticity. Jpn J Appl Entomol Zool 60:67–75 (In Japanese with English summary) CrossRefGoogle Scholar
  55. Mukai H, Hironaka M, Tojo S, Nomakuchi S (2012) Maternal vibration induces synchronous hatching in a subsocial burrower bug. Anim Behav 84:1443–1448CrossRefGoogle Scholar
  56. Mukai H, Hironaka M, Tojo S, Nomakuchi S (2014) Maternal vibration: an important cue for embryo hatching in a subsocial shield bug. PLoS ONE 9:e87932CrossRefGoogle Scholar
  57. Mukai H, Hironaka M, Tojo S, Nomakuchi S (2018) Maternal hatching synchronization in a subsocial burrower bug mitigates the risk of future sibling cannibalism. Ecol Evol 8:3376–3381CrossRefGoogle Scholar
  58. Nishino H, Mukai H, Takanashi T (2016) Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res 366:549–572CrossRefGoogle Scholar
  59. Nomakuchi S, Yanagi T, Baba N, Takahira A, Hironaka M, Filippi L (2012) Provisioning call by mothers of a subsocial shield bug. J Zool 288:50–56CrossRefGoogle Scholar
  60. Numata H, Kon M, Fujii H, Hidaka T (1989) Sound production in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Alydidae). Appl Entomol Zool 24:169–173CrossRefGoogle Scholar
  61. Percy DM, Taylor GS, Kennedy M (2006) Psyllid communication: Acoustic diversity, mate recognition and phylogenetic signal. Invertebr Syst 20:431–445CrossRefGoogle Scholar
  62. Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating behaviour with substrate-borne vibrations—potential for insect pest control. Pest Manag Sci 71:15–23CrossRefGoogle Scholar
  63. Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016a) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–921CrossRefGoogle Scholar
  64. Polajnar J, Maistrello L, Bertarella A, Mazzoni V (2016b) Vibrational communication of the brown marmorated stink bug (Halyomorpha halys). Physiol Entomol 41:249–259CrossRefGoogle Scholar
  65. Sakakibara M (2016) Introduction to true bug biology. Ann Rept Plant Prot North Japan 67:14–23 (In Japanese) Google Scholar
  66. Schilman PE, Manrique G, Lazzari CR (2001) Comparison of disturbance stridulation in five species of triatominae bugs. Acta Trop 79:171–178CrossRefGoogle Scholar
  67. Shimoda M, Honda K (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421CrossRefGoogle Scholar
  68. Söderberg O, Sozinov A, Lindroos VK (2005) Giant magnetostrictive materials. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Amsterdam, pp 1–3Google Scholar
  69. Stölting H, Moore TE, Lakes-Harlan R (2002) Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa. J Insect Sci 2:1–7CrossRefGoogle Scholar
  70. Takanashi T, Fukaya M, Nakamuta K, Skals N, Nishino H (2016) Substrate vibrations mediate behavioral responses via femoral chordotonal organs in a cerambycid beetle. Zool Lett 2:18CrossRefGoogle Scholar
  71. Tishechkin DY (2003) Vibrational communication in Cercopoidea and Fulgoroidea (Homoptera: Cicadina) with notes on classification of higher taxa. Russ Entomol J 12:129–181Google Scholar
  72. Tishechkin DY (2008) On the similarity of temporal pattern of vibrational calling signals in different species of Fulgoroidea (Homoptera: Auchenorrhyncha). Russ Entomol J 17:349–357Google Scholar
  73. Tishechkin DY (2016) New data on vibrational calling signals of Fulgoroidea (Homoptera: Auchenorrhyncha) from the Asian part of Palaearctic with new records of three species of Cixiidae. Russ Entomol J 25:307–322Google Scholar
  74. Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly-ant mutualism. Anim Behav 60:13–26CrossRefGoogle Scholar
  75. Tsubaki R, Hosoda N, Kitajima H, Takanashi T (2014) Substrate-borne vibrations induce behavioral responses of a leaf-dwelling cerambycid Paraglenea fortunei. Zool Sci 31:789–794CrossRefGoogle Scholar
  76. Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134CrossRefGoogle Scholar
  77. Virant-Doberlet M, Žežlina I (2014) Vibrational communication of Metcalfa pruinosa (Hemiptera: Fulgoroidea: Flatidae). Ann Entomol Soc Am 100:73–82CrossRefGoogle Scholar
  78. Wang Q (2017) Cerambycidae of the world: biology and pest management. CRC Press, Boca RatonCrossRefGoogle Scholar
  79. Wenninger EJ, Hall DG, Mankin RW (2009) Vibrational communication between the sexes in Diaphorina citri (Hemiptera: Psyllidae). Ann Entomol Soc Am 102:547–555CrossRefGoogle Scholar
  80. Wessel A (2006) Stridulation in the Coleoptera—an overview. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor and Francis, London, pp 397–404Google Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2019

Authors and Affiliations

  1. 1.Department of Forest EntomologyForestry and Forest Products Research InstituteTsukubaJapan
  2. 2.Institute of Fruit Tree and Tea ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
  3. 3.Department of Agro-Environmental Sciences, Faculty of AgricultureUniversity of the RyukyusNishihara, OkinawaJapan
  4. 4.The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan

Personalised recommendations