Applied Entomology and Zoology

, Volume 51, Issue 4, pp 615–621 | Cite as

Dead-twig discrimination for oviposition in a cicada, Cryptotympana facialis (Hemiptera: Cicadidae)

  • Minoru Moriyama
  • Tomoya Matsuno
  • Hideharu NumataEmail author
Original Research Paper


In phytophagous insects, in spite of some general advantages of oviposition on a vital part of their host food plants, certain species prefer dead tissues for oviposition. In the present study, we examined oviposition-related behaviors of a cicada, Cryptotympana facialis (Walker), which lays eggs exclusively into dead twigs. From behavioral observation of females experimentally assigned to live or dead plant material, we found that egg laying into freshly cut live twigs is abandoned in two phases, i.e., before and after initiation of egg nest-creating behavior with the ovipositor. Behavioral sequence analyses revealed that oviposition was generally preceded by rubbing with the rostrum tip and brief stylet-penetration behavior, suggesting that oral assessment may play a primary role in decision-making of oviposition in the earlier discriminating phase. From the similarity in behavioral flows of this assessment to vital tissue-seeking behaviors, cicada females are presumed to judge a twig as dead by sensing the absence of vital cues. These findings contribute to understanding a behavioral basis of dead plant recognition for oviposition, potentially giving an insight into ecological and evolutionary aspects of diverse oviposition preferences.


Cicada Dead twig Kinematic diagram Oviposition behavior Oviposition site selection 



We thank Elizabeth Nakajima for linguistic corrections.

Supplementary material

Online Resource 1. A video of boring behavior (MPG 3464 kb)

Online Resource 2. A video of egg-laying behavior (MPG 4020 kb)

Online Resource 3. A video of rubbing behavior (MPG 2300 kb)

Online Resource 4. A video of probing behavior (MPG 3932 kb)

Online Resource 5. A video of scuffing behavior (MPG 2088 kb)


  1. Afify A, Galizia CG (2015) Chemosensory cues for mosquito oviposition site selection. J Med Entomol 52:120–130CrossRefPubMedGoogle Scholar
  2. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844CrossRefPubMedGoogle Scholar
  3. Azuma S (1976) Biological studies of the sugar cane cicada, Mogannia minuta Matsumura, with special reference to its occurrence in relation to changes of commercial sugar cane varieties in Okinawa. Sci Bull Fac Agric Univ Ryukyus 23:125–140 (in Japanese with English summary) Google Scholar
  4. Backus EA (1988) Sensory systems and behaviours which mediate hemipteran plant-feeding: a taxonomic overview. J Insect Physiol 34:151–165CrossRefGoogle Scholar
  5. Beamer R (1928) Studies on the biology of Kansas Cicadidae. Univ Kansas Sci Bull 18:155–263Google Scholar
  6. Chapman RF, Bernays EA (1989) Insect behavior at the leaf surface and learning as aspects of host plant selection. Experientia 45:215–222CrossRefGoogle Scholar
  7. Cheung WWK, Marshall AT (1973) Water and ion regulation in cicadas in relation to xylem feeding. J Insect Physiol 19:1801–1816CrossRefGoogle Scholar
  8. Clay K, Shelton ALW, Winkle C (2009) Differential susceptibility of tree species to oviposition by periodical cicadas. Ecol Entomol 34:277–286CrossRefGoogle Scholar
  9. Cook WM, Holt RD, Yao J (2001) Spatial variability in oviposition damage by periodical cicadas in a fragmented landscape. Oecologia 127:51–61CrossRefGoogle Scholar
  10. Crawley MJ (2005) Statistics: an introduction using R. Wiley, West SussexCrossRefGoogle Scholar
  11. Cyranoski D (2007) Flying insects threaten to deafen Japan. Nature 448:49073Google Scholar
  12. Decaro Júnior ST, Martinelli NM, Maccagnan DHB, Ribeiro ESDB (2012) Oviposition of Quesada gigas (Hemiptera: Cicadidae) in coffee plants. Rev Colomb Entomol 38:1–5Google Scholar
  13. Desurmont GA, Fritzen CM, Weston PA (2009) Oviposition by Pyrrhalta viburni (Paykull) on dead plant material: successful reproductive strategy or maladaptive behavior? Res Chrysomelidae 2:119–129CrossRefGoogle Scholar
  14. Ferran A, Rortais A, Malausa JC et al (1996) Ovipositional behaviour of Macrolophus caliginosus (Heteroptera: Miridae) on tobacco leaves. Bull Entomol Res 86:123CrossRefGoogle Scholar
  15. Hattori M (1988) Host-plant factors responsible for oviposition behaviour in the lima bean pod borer, Etiella zinckenella Treitschke. J Insect Physiol 34:191–196CrossRefGoogle Scholar
  16. Hayashi M (1976) Description of the nymphs of Mogannia minuta Matsumura (Homoptera, Cicadidae), a pest of sugarcane in the Ryukyus. Kontyû 44:142–149Google Scholar
  17. Hayashi M, Saisho Y (2011) The Cicadidae of Japan. Seibundo Shinkosha, Tokyo (in Japanese) Google Scholar
  18. Hummel NA, Zalom FG, Peng CYS (2006) Structure of female genitalia of glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). Arthropod Struct Dev 35:111–125CrossRefPubMedGoogle Scholar
  19. Ikeda T, Enda N, Yamane A et al (1980) Attractants for the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Appl Entomol Zool 15:358–361Google Scholar
  20. Ito Y, Nagamine M (1981) Why a cicada, Mogannia minuta Matsumura, became a pest of sugarcane: an hypothesis based on the theory of “escape”. Ecol Entomol 6:273–283CrossRefGoogle Scholar
  21. Justus KA, Mitchell BK (1996) Oviposition site selection by the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). J Insect Behav 9:887–898CrossRefGoogle Scholar
  22. Karban R (1997) Evolution of prolonged development: a life table analysis for periodical cicadas. Am Nat 150:446–461CrossRefPubMedGoogle Scholar
  23. Kato M (1956) The biology of the cicadas. Iwasaki Shoten, Tokyo (in Japanese) Google Scholar
  24. Katsuya T (2007) Damage of optic fiber cables by Cryptotympana facialis and its measures. In: Abstracts of the 51st annual meeting of the Japanese Society of Applied Entomology and Zoology, vol 51, p 127 (in Japanese)Google Scholar
  25. Martínez G, Soler R, Dicke M (2013) Behavioral ecology of oviposition-site selection in herbivorous true bugs. In: Brockmann HJ, Roper TJ, Naguib M, Mitani JC, Simmons LW, Barrett L (eds) Advances in the study of behavior 45. Elsevier, Amsterdam, pp 175–207Google Scholar
  26. Mattingly WB, Flory SL (2011) Plant architecture affects periodical cicada oviposition behavior on native and non-native hosts. Oikos 120:1083–1091CrossRefGoogle Scholar
  27. Moriyama M, Numata H (2006) Induction of egg hatching by high humidity in the cicada Cryptotympana facialis. J Insect Physiol 52:1219–1225  CrossRefPubMedGoogle Scholar
  28. Moriyama M, Numata H (2008) Diapause and prolonged development in the embryo and their ecological significance in two cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata. J Insect Physiol 54:1487–1494CrossRefPubMedGoogle Scholar
  29. Moriyama M, Numata H (2011) A cicada that ensures its fitness during climate warming by synchronizing its hatching time with the rainy season. Zool Sci 28:875–881CrossRefPubMedGoogle Scholar
  30. Moriyama M, Numata H (2015) Urban soil compaction reduces cicada diversity. Zool Lett 1:19CrossRefGoogle Scholar
  31. Nottingham SF (1988) Host-plant finding for oviposition by adult cabbage root fly, Delia radicum. J Insect Physiol 34:227–234CrossRefGoogle Scholar
  32. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  33. Refsnider JM, Janzen FJ (2010) Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition site choice. Annu Rev Ecol Evol Syst 41:39–57CrossRefGoogle Scholar
  34. Resetarits WJ (1996) Oviposition site choice and life history evolution. Am Zool 36:205–215CrossRefGoogle Scholar
  35. Romani R, Salerno G, Frati F et al (2005) Oviposition behaviour in Lygus rugulipennis: a morpho-functional study. Entomol Exp Appl 115:17–25CrossRefGoogle Scholar
  36. Schurr U (1998) Xylem sap sampling—new approaches to an old topic. Trends Plant Sci 3:293–298CrossRefGoogle Scholar
  37. Shibata E (1987) Oviposition schedules, survivorship curves, and mortality factors within trees of two cerambycid beetles (Coleoptera: Cerambycidae), the Japanese pine sawyer, Monochamus alternatus Hope, and sugi bark borer, Semanotus japonicus Lacordaire. Res Popul Ecol 29:347–367CrossRefGoogle Scholar
  38. Stoffolano JG, Yin LRS (1987) Structure and function of the ovipositor and associated sensilla of the apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Int J Insect Morphol Embryol 16:41–69CrossRefGoogle Scholar
  39. Takakura KI, Yamazaki K (2007) Cover dependence of predation avoidance alters the effect of habitat fragmentation on two cicadas (Hemiptera: Cicadidae). Ann Entomol Soc Am 100:729–735CrossRefGoogle Scholar
  40. Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14CrossRefGoogle Scholar
  41. Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89CrossRefGoogle Scholar
  42. Tsukamoto M, Imada E, Hoshino Y et al (2010) Development of cicada-resistant resin and optical drop cables. IEICE Tech Rep 110:39–44 (in Japanese with English summary) Google Scholar
  43. Tsukamoto M, Yasutomi T, Hoshino Y et al (2008) Experimental study on cicada resistant performance of low friction and high abrasion resistant cables. IEICE Tech Rep 108:81–84 (in Japanese with English summary) Google Scholar
  44. Ventura MU, Panizzi AR (2003) Population dynamics, gregarious behavior and oviposition preference of Neomegalotomus parvus (Westwood) (Hemiptera: Heteroptera: Alydidae). Brazilian Arch Biol Technol 46:33–40CrossRefGoogle Scholar
  45. White J (1980) Resource partitioning by ovipositing cicadas. Am Nat 115:1–28CrossRefGoogle Scholar
  46. White J (1981) Flagging: host defenses versus oviposition strategies in periodical cicadas (Magicicada spp., Cicadidae, Homoptera). Can Entomol 113:727–738CrossRefGoogle Scholar
  47. White J, Lloyd M (1981) On the stainability and mortality of periodical cicada eggs. Am Midl Nat 1062:219–228CrossRefGoogle Scholar
  48. White J, Lloyd M, Karban R (1982) Why don’t periodical cicadas normally live in coniferous forests? Environ Entomol 11:475–482CrossRefGoogle Scholar
  49. White J, Strehl CE (1978) Xylem feeding by periodical cicada nymphs on tree roots. Ecol Entomol 3:323–327CrossRefGoogle Scholar
  50. Yang LH (2006) Periodical cicadas use light for oviposition site selection. Proc Biol Sci 273:2993–3000CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Applied Entomology and Zoology 2016

Authors and Affiliations

  • Minoru Moriyama
    • 1
  • Tomoya Matsuno
    • 2
  • Hideharu Numata
    • 3
    Email author
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Graduate School of ScienceOsaka City UniversityOsakaJapan
  3. 3.Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations