Advertisement

Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease

  • Miryam Cannizzaro
  • Jana Jarošová
  • Boel De PaepeEmail author
Human Genetics • Review
  • 18 Downloads

Abstract

The solute carrier (SLC) group of membrane transport proteins is crucial for cells via their control of import and export of vital molecules across the cellular membrane. Defects in these transporters with narrow substrate specificities cause monogenic disorders, giving us essential clues of their precise roles in cellular functioning. The SLC5 family in particular has been linked to various human diseases, of mild and severe phenotype as well as high and low prevalence. In this review, we describe the effects on health of SLC5 dysfunction and dysregulation by summarizing findings in patients with transporter gene defects. Patients display a plethora of pathologies which include glucose/galactose malabsorption, familiar renal glycosuria, thyroid dyshormonogenesis, and distal hereditary motor neuronopathies. In addition, the therapeutic potential of intervening in transporter activities for treating common diseases such as diabetes and cancer is explored.

Keywords

Solute carriers Diabetes Cancer Sodium glucose cotransporters Glucose/galactose malabsorption 

Notes

Funding

The international cooperation writing of this paper entailed was supported by the International Federation of Medical Students’ Associations (IFMSA) SCORE research exchange program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants in the reported studies.

References

  1. Al-Suyufi Y, Al-Saleem K, Al-Mehaidib A et al (2018) SLC5A1 mutations in Saudi Arabian patients with congenital glucose-galactose malabsorption. J Pediatr Gastroenterol Nutr 66:250–252.  https://doi.org/10.1097/MPG.0000000000001694 CrossRefGoogle Scholar
  2. Altorjay A, Dohán O, Szilágyi A et al (2007) Expression of the Na+/I symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus. BMC Cancer 7(5).  https://doi.org/10.1186/1471-2407-7-5
  3. Anderson S, Koniaris S, Baozhong Xin B et al (2017) Congenital glucose–galactose malabsorption: a case report. J Pediatr Health Care 31(4).  https://doi.org/10.1016/j.pedhc.2017.01.005
  4. Askanas V, Engel WK, Nogalska A (2015) Sporadic inclusion-body myositis: a degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim Biophys Acta 1852:633–643.  https://doi.org/10.1016/j.bbadis.2014.09.005 CrossRefGoogle Scholar
  5. Assiri A, Saeed A, Alnimri A et al (2013) Five Arab children with glucose-galactose malabsorption. P Paediatr Int Child Health 33:108–110.  https://doi.org/10.1179/2046905513Y.0000000055 CrossRefGoogle Scholar
  6. Barwick K, Wright J, Al-Turki S et al (2012) Defective presynaptic choline transport underlies hereditary motor neuropathy. Am J Hum Genet 91:1103–1107.  https://doi.org/10.1016/j.ajhg.2012.09.019 CrossRefGoogle Scholar
  7. Bauche S, O'Reagan S, Azuma Y et al (2018) Impaired presynaptic high affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet 99:753–761.  https://doi.org/10.1016/j.ajhg.2016.06.033 CrossRefGoogle Scholar
  8. Berry G, Mallee J, Kwon H et al (1995) The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 25:507–513.  https://doi.org/10.1016/0888-7543(95)80052-N CrossRefGoogle Scholar
  9. Bhutia Y, Babu E, Ramachandran S et al (2016) SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochem J 473:1113–1124.  https://doi.org/10.1042/BJ20150751 CrossRefGoogle Scholar
  10. Brown G K (2000) Glucose transporters: structure, function and consequences of deficiency. J Inherit Metab Dis 23:237–246.  https://doi.org/10.1023/A:1005632012591
  11. Coady M, Wallendorff B, Gagnon D et al (2002) Identification of a novel Na+/myo-inositol cotransporter. J Biol Chem 277:35219–35224.  https://doi.org/10.1074/jbc.m204321200 CrossRefGoogle Scholar
  12. Colas C, Ung PMU, Schlessinger A (2016) SLC transporters: structure, function, and drug discovery. Medchemcomm 7:1069–1081.  https://doi.org/10.1039/C6MD00005C CrossRefGoogle Scholar
  13. Dai G, Yu H, Kruse M et al (2016) Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P 2 levels. Proc Natl Acad Sci U S A 113:E3290–E3299.  https://doi.org/10.1073/pnas.1606348113 CrossRefGoogle Scholar
  14. De Paepe B, Martin J, Herbelet S et al (2016) Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmoregulation as a contributing pathogenic mechanism. Lab Investig 96:872–884.  https://doi.org/10.1038/labinvest.2016.68 CrossRefGoogle Scholar
  15. Di Cosmo C, Fanelli G, Tonacchera M et al (2006) The sodium-iodide symporter expression in placental tissue at different gestational age: an immunohistochemical study. Clin Endocrinol 65:544–548.  https://doi.org/10.1111/j.1365-2265.2006.02577.x CrossRefGoogle Scholar
  16. Diez-Sampedro A, Hirayama BA, Osswald C et al (2003) A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A 100:11753–11758.  https://doi.org/10.1073/pnas.1733027100 CrossRefGoogle Scholar
  17. Elahi A, Sabui S, Narasappa N et al (2018) Biotin deficiency induces Th1- and Th17-mediated proinflammatory responses in human CD4 + T lymphocytes via activation of the mTOR signaling pathway. J Immunol 200:2563–2570.  https://doi.org/10.4049/jimmunol.1701200 CrossRefGoogle Scholar
  18. Fernandez-Rozadilla C, Cazier J, Tomlinson I et al (2013) A colorectal cancer genome-wide association study in a Spanish cohort identifies two variants associated with colorectal cancer risk at 1p33 and 8p12. BMC Genomics 14:55.  https://doi.org/10.1186/1471-2164-14-55 CrossRefGoogle Scholar
  19. Fruman D, Bismuth G (2009) Fine tuning the immune response with PI3K. Immunol Rev 228:253–272.  https://doi.org/10.1111/j.1600-065X.2008.00750.x CrossRefGoogle Scholar
  20. Gopal E, Umapathy N, Martin P et al (2007) Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochim Biophys Acta 1768:2690–2697.  https://doi.org/10.1016/j.bbamem.2007.06.031 CrossRefGoogle Scholar
  21. Haas R, Smith J, Rocher-Ros V et al (2015) Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 13:e1002202.  https://doi.org/10.1371/journal.pbio.1002202 CrossRefGoogle Scholar
  22. Hsia DS, Grove O, Cefalu WT (2017) An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 24:73–79.  https://doi.org/10.1097/MED.0000000000000311 Google Scholar
  23. Huang W, Alexander G, Daly E et al (1999) High brain myo-inositol levels in the predementia phase of Alzheimer’s disease in adults with Down’s syndrome: a 1H MRS study. Am J Psychiatry 156:1879–1886.  https://doi.org/10.1176/ajp.156.12.1879 Google Scholar
  24. Kleta R (2004) Renal glucosuria due to SGLT2 mutations. Mol Genet Metab 82:56–58.  https://doi.org/10.1016/j.ymgme.2004.01.018 CrossRefGoogle Scholar
  25. Koga M, Murai J, Saito H et al (2010) Habitual intake of dairy products influences serum 1,5-anhydroglucitol levels independently of plasma glucose. Diabetes Res Clin Pract 90:122–125.  https://doi.org/10.1016/j.diabres.2010.06.023 CrossRefGoogle Scholar
  26. Kosugi S, Inoue S, Matsuda A et al (1998a) Novel, missense, and loss-of-function mutations in the sodium/iodide symporter gene causing iodide transport defect in three Japanese patients. J Clin Endocrinol Metab 83:3365–3368.  https://doi.org/10.1210/jcem.83.9.5243 CrossRefGoogle Scholar
  27. Kosugi S, Sato Y, Matsuda A et al (1998b) High prevalence of T354P sodium/iodide symporter gene mutation in Japanese patients with iodide transport defect who have heterogeneous clinical pictures. J Clin Endocrinol Metab 83:4123–4129.  https://doi.org/10.1210/jcem.83.11.5229 Google Scholar
  28. Kosugi S, Bhayana S, Dean H (1999) A novel mutation in the sodium/iodide symporter gene in the largest family with iodide transport defect. J Clin Endocrinol Metab 84:3248–3253.  https://doi.org/10.1210/jcem.84.9.5971 Google Scholar
  29. Kothinti R, Blodgett A, North P et al (2012) A novel SGLT is expressed in the human kidney. Eur J Pharmacol 690:77–83.  https://doi.org/10.1016/j.ejphar.2012.06.033 CrossRefGoogle Scholar
  30. Lacoste C, Hervé J, Bou Nader M et al (2012) Iodide transporter NIS regulates cancer cell motility and invasiveness by interacting with the rho guanine nucleotide exchange factor LARG. Cancer R 72:5505–5515.  https://doi.org/10.1158/0008-5472.CAN-12-0516 CrossRefGoogle Scholar
  31. Lam J, Martı́n M, Turk E et al (1999) Missense mutations in SGLT1 cause glucose–galactose malabsorption by trafficking defects. Biochim Biophys Acta 1453:297–303.  https://doi.org/10.1016/S0925-4439(98)00109-4 CrossRefGoogle Scholar
  32. Lannutti B, Meadows S, Herman S et al (2011) CAL-101, a P110 selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117:591–594.  https://doi.org/10.1182/blood-2010-03-275305 CrossRefGoogle Scholar
  33. Lee H, Han J, Park H et al (2012) Familial renal glucosuria: a clinicogenetic study of 23 additional cases. Pediatr Nephrol 27:1091–1095.  https://doi.org/10.1007/s00467-012-2109-9 CrossRefGoogle Scholar
  34. Li H, Myeroff L, Smiraglia D et al (2003) SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. P Proc Natl Acad Sci USA 100:8412–8417.  https://doi.org/10.1073/pnas.1430846100 CrossRefGoogle Scholar
  35. Li M, Maruthur NM, Loomis SJ et al (2017) Genome-wide association study of 1,5-anhydroglucitol identifies novel genetic loci linked to glucose metabolism. Sci Rep 7(1).  https://doi.org/10.1038/s41598-017-02287-x
  36. Li S, Yang Y, Huang L et al (2019) A novel compound heterozygous mutation in SLC5A2 contributes to familial renal glucosuria in a Chinese family, and a review of the relevant literature. Mol Med Rep 19:4364–4376.  https://doi.org/10.3892/mmr.2019.10110 Google Scholar
  37. Magen D, Sprecher E, Zelikovic I et al (2005) A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int 67:34–41.  https://doi.org/10.1111/j.1523-1755.2005.00053.x CrossRefGoogle Scholar
  38. Martin MG, Turk E, Lostao MP et al (1996) Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet 12:216–220.  https://doi.org/10.1038/ng0296-216 CrossRefGoogle Scholar
  39. McMacken G, Whittaker RG, Evangelista T et al (2018) Congenital myasthenic syndrome with episodic apnoea: clinical, neurophysiological and genetic features in the long-term follow-up of 19 patients. J Neurol 265:194–203.  https://doi.org/10.1007/s00415-017-8689-3 CrossRefGoogle Scholar
  40. Opie LH (2014) Sodium glucose co-transporter 2 (SGLT2) inhibitors: new among antidiabetic drugs. Cardiovasc Drugs Ther 28:331–334.  https://doi.org/10.1007/s10557-014-6522-0 CrossRefGoogle Scholar
  41. Pardal-Fernandez JM, Carrascosa-Romero MC, Avarez S et al (2018) A new severe mutation in the SLC5A7 gene related to congenital myasthenic syndrome type 20. Neuromuscul Disord 28:881–884.  https://doi.org/10.1016/j.nmd.2018.06.020
  42. Park JY, Kim D, Yang M et al (2013) Gene silencing of SLC5A8 identified by genome-wide methylation profiling in lung cancer. Lung Cancer 79:198–204.  https://doi.org/10.1016/j.lungcan.2012.11.019 CrossRefGoogle Scholar
  43. Paroder V, Spencer SR, Paroder M et al (2006) Na(+)/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: molecular characterization of SMCT. Proc Natl Acad Sci U S A 103:7270–7275.  https://doi.org/10.1073/pnas.0602365103 CrossRefGoogle Scholar
  44. Pode-Shakked B, Reish O, Aktuglu-Zeybek C et al (2014) Bitterness of glucose/galactose: novel mutations in the SLC5A1 gene. J Pediatr Gastroenterol Nutr 58:57–60.  https://doi.org/10.1097/MPG.0000000000000114 CrossRefGoogle Scholar
  45. Pohlenz J, Medeiros-Neto G, Gross JL et al (1997) Hypothyroidism in a Brazilian kindred due to iodide trapping defect caused by a homozygous mutation in the sodium/iodide symporter gene. Biochem Biophys Res Commun 240:488–491.  https://doi.org/10.1006/bbrc.1997.7594 CrossRefGoogle Scholar
  46. Pohlenz J, Rosenthal IM, Weiss RE et al (1998) Congenital hypothyroidism due to mutations in the sodium/iodide symporter: identification of a nonsense mutation producing a downstream cryptic 3′ splice site. J Clin Invest 101:1028–1035.  https://doi.org/10.1172/JCI1504 CrossRefGoogle Scholar
  47. Ravera S, Reyna-Neyra A, Ferrandino G et al (2017) The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol 79:261–289.  https://doi.org/10.1146/annurev-physiol-022516-034125 CrossRefGoogle Scholar
  48. Rieg T, Vallon V (2018) Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:2079–2086.  https://doi.org/10.1007/s00125-018-4654-7 CrossRefGoogle Scholar
  49. Roll P, Massacrier A, Pereira S et al (2002) New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (Infantile Convulsions and Choreoathetosis) and BFIC (Benign Familial Infantile Convulsions) families. Gene 285:141–148.  https://doi.org/10.1016/S0378-1119(02)00416-X CrossRefGoogle Scholar
  50. Sakurai Y (2018) Autoimmune aspects of Kawasaki disease. J Investig Allergol Clin Immunol 29(4).  https://doi.org/10.18176/jiaci.0300
  51. Salter CG, Beijer D, Hardy H et al (2018) Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies. Neurol Genet 4:e222.  https://doi.org/10.1212/NXG.0000000000000222 CrossRefGoogle Scholar
  52. Sands AT, Zambrowicz BP, Rosenstock J et al (2015) Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 38:1181–1188.  https://doi.org/10.2337/dc14-2806 CrossRefGoogle Scholar
  53. Sauer K, Cooke MP (2010) Regulation of immune cell development through soluble inositol(1,3,4,5)tetrakisphosphate. Nat Rev Immunol 10:257–271.  https://doi.org/10.1038/nri2745 CrossRefGoogle Scholar
  54. Scafoglio C, Hirayama BA, Kepe V et al (2015) Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A 112:E4111–E4119.  https://doi.org/10.1073/pnas.1511698112 CrossRefGoogle Scholar
  55. Subramanian VS, Constantinescu AR, Benke PJ et al (2017) Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child. Hum Genet 136:253–261.  https://doi.org/10.1007/s00439-016-1751-x CrossRefGoogle Scholar
  56. Sugawa M (1993) Alterations of inositol phosphate turnover in striatum of aged rats. Eur J Pharmacol 247:39–44.  https://doi.org/10.1016/0922-4106(93)90135-V CrossRefGoogle Scholar
  57. Tazawa S, Yamato T, Fujikura H et al (2005) SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci 76:1039–1050.  https://doi.org/10.1016/j.lfs.2004.10.016 CrossRefGoogle Scholar
  58. Tazebay UH, Wapnir IL, Levy O et al (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 6:871–878.  https://doi.org/10.1038/78630 CrossRefGoogle Scholar
  59. Tsai LJ, Hsiao SH, Tsai LM et al (2007) The sodium-dependent glucose cotransporter SLC5A11 as an autoimmune modifier gene in SLE: SLC5A11 as an autoimmune modifier gene in SLE. Tissue Antigens 71:114–126.  https://doi.org/10.1111/j.1399-0039.2007.00975.x CrossRefGoogle Scholar
  60. Turk E, Zabel B, Mundlos S et al (1991) Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354–356.  https://doi.org/10.1038/350354a0 CrossRefGoogle Scholar
  61. Ung C, Sanchez AV, Shen L et al (2017) Whole exome sequencing identification of novel candidate genes in patients with proliferative diabetic retinopathy. Vis Res 139:168–176.  https://doi.org/10.1016/j.visres.2017.03.007 CrossRefGoogle Scholar
  62. Van den Heuvel LP, Assink K, Willemsen M et al (2002) Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 111:544–547.  https://doi.org/10.1007/s00439-002-0820-5 CrossRefGoogle Scholar
  63. Van Dieren J, Simons-Oosterhuis Y, Raatgeep H et al (2011) Anti-inflammatory actions of phosphatidylinositol. Eur J Immunol 41:1047–1057.  https://doi.org/10.1002/eji.201040899 CrossRefGoogle Scholar
  64. Verma S (2018 Oct) McMurray JJ (2018) SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 61(10):2108–2117.  https://doi.org/10.1007/s00125-018-4670-7 CrossRefGoogle Scholar
  65. Wang X, Yu M, Wang T et al (2017) Genetic analysis and literature review of Chinese patients with familial renal glucosuria: identification of a novel SLC5A2 mutation. Clin Chim Acta 469:105–110.  https://doi.org/10.1016/j.cca.2017.03.027 CrossRefGoogle Scholar
  66. Wapnir IL, Van de Rijn M, Nowels K et al (2003) Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab 88:1880–1888.  https://doi.org/10.1210/jc.2002-021544 CrossRefGoogle Scholar
  67. Weber MA, Mansfield TA, Cain VA et al (2016) Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol 4:211–220.  https://doi.org/10.1016/S2213-8587(15)00417-9 CrossRefGoogle Scholar
  68. Wiese TJ, Matsushita K, Lowe WL (1996) Localization and regulation of renal Na+/myo-inositol cotransporter in diabetic rats. Kidney Int 50(4):1202–1211.  https://doi.org/10.1038/ki.1996.429 CrossRefGoogle Scholar
  69. Wright EM (2013) Glucose transport families SLC5 and SLC50. Mol Asp Med 34:183–196.  https://doi.org/10.1016/j.mam.2012.11.002 CrossRefGoogle Scholar
  70. Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794.  https://doi.org/10.1152/physrev.00055.2009 CrossRefGoogle Scholar
  71. Xin B, Wang H (2011) Multiple sequence variations in SLC5A1 gene are associated with glucose-galactose malabsorption in a large cohort of old order Amish. Clin Genet 79:86–91.  https://doi.org/10.1111/j.1399-0004.2010.01440.x CrossRefGoogle Scholar
  72. Yu L, Hou P, Lv JC et al (2014) A novel sodium–glucose co-transporter 2 gene (SGLT2) mutation contributes to the abnormal expression of SGLT2 in renal tissues in familial renal glucosuria. Int Urol Nephrol 46:2237–2238.  https://doi.org/10.1007/s11255-014-0755-5 CrossRefGoogle Scholar
  73. Zhang Y, Zhang Y, Sun K et al (2019) The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 11:1–13.  https://doi.org/10.1093/jmcb/mjy052 CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2019

Authors and Affiliations

  1. 1.Department of Neurology & Neuromuscular Reference CenterGhent University HospitalGhentBelgium

Personalised recommendations