Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 914–924 | Cite as

Fengyun-3D MERSI True Color Imagery Developed for Environmental Applications

  • Xiuzhen HanEmail author
  • Feng Wang
  • Yang Han
Regular Article

Abstract

Many techniques were developed for creating true color images from satellite solar reflective bands, and the so-derived images have been widely used for environmental monitoring. For the newly launched Fengyun-3D (FY-3D) satellite, the same capability is required for its Medium Resolution Spectrum Imager-II (MERSI-II). In processing the MERSI-II true color image, a more comprehensive processing technique is developed, including the atmospheric correction, nonlinear enhancement, and image splicing. The effect of atmospheric molecular scattering on the total reflectance is corrected by using a parameterized radiative transfer model. A nonlinear stretching of the solar band reflectance is applied for increasing the image contrast. The discontinuity in composing images from multiple orbits and different granules is eliminated through the distance weighted pixel blending (DWPB) method. Through these processing steps, the MERSI-II true color imagery can vividly detect many natural events such as sand and dust storms, snow, algal bloom, fire, and typhoon. Through a comprehensive analysis of the true color imagery, the specific natural disaster events and their magnitudes can be quantified much easily, compared to using the individual channel data.

Key words

Medium Resolution Spectrum Imager (MERSI) Fengyun satellite true color imagery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capuzzo, E., C. P. Lynam, J. Barry, et al., 2018: A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Global Change Biol., 24, e352–e364, doi:  https://doi.org/10.1111/gcb.13916.CrossRefGoogle Scholar
  2. Gao, B. C., M. J. Montes, Z. Ahmad, et al., 2000: Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl. Opt., 39, 887–896, doi:  https://doi.org/10.1364/AO.39.000887.CrossRefGoogle Scholar
  3. Greaves, J. R., and W. E. Shenk, 1985: The development of the geosynchronous weather satellite system. Monitoring Earth’s Ocean, Land, and Atmosphere from Space-Sensors, Systems, and Applications, A. Schnapf, Ed., AIAA, New York, 150–181.Google Scholar
  4. Gumley, L., J. Descloitres, and J. Schmaltz, 2010: Creating Reprojected True Color MODIS Images: A Tutorial. [Available online at https://doi.org/cdn.earthdata.nasa.gov/conduit/upload/946/MODIS_True_Color.pdf].
  5. Hillger, D., C. Seaman, C. Liang, et al., 2014: Suomi NPP VERS imagery evaluation. J. Geophys. Res. Atmos., 119, 6440–6455, doi:  https://doi.org/10.1002/2013JD021170.CrossRefGoogle Scholar
  6. Kneizys, F. X., E. P. Shettle, W. O. Gallery, et al., 1980: Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 5. Report AFGL-TR-80-067, Air Force Geophysics Lab., Hanscom AFB, MA.Google Scholar
  7. Miller, S. D., T. L. Schmit, C. J. Seaman, et al., 2016: A sight for sore eyes: The return of true color to geostationary satellites. Bull. Amer. Meteor. Soc., 10, 1803–1816, doi:  https://doi.org/10.1175/BAMS-D-15-00154.1.CrossRefGoogle Scholar
  8. NOAA NESDIS Center for Satellite Applications and Research, 2012: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter. Aerosol Product Application Team of the AWG A Aerosols/Air Quality/Atmospheric Chemistry Team. Version 3.0, NOAA. (https://doi.org/www.star.nesdis.noaa.gov/goesr/docs/ATBD/AOD.pdf)
  9. Richter, R., 1996: A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens., 17, 1201–1214, doi:  https://doi.org/10.1080/01431169608949077.CrossRefGoogle Scholar
  10. Tanré, D., and M. Legrand, 1991: On the satellite retrieval of Saharan dust optical thickness over land: Two different approaches. J. Geophys. Res. Atmos., 96, 5221–5227, doi:  https://doi.org/10.1029/90JD02607.CrossRefGoogle Scholar
  11. Teillet, P. M., and G. Fedosejevs, 1995: On the dark target approach to atmospheric correction of remotely sensed data. Canadian J. Remote Sens., 21, 374–387, doi:  https://doi.org/10.1080/07038992.1995.10855161.CrossRefGoogle Scholar
  12. Vermote, E. F., D. Tanré, J. L. Deuzé, et al., 1997: Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens., 35, 675–686, doi:  https://doi.org/10.1109/36.581987.CrossRefGoogle Scholar
  13. Xu, Y. L., R. S. Wang, S. W. Liu, et al., 2008: Atmospheric correction of hyperspectral data using MODTRAN model. Proceedings of SPIE 7123, Remote Sensing of the Environment: 16th National Symposium on Remote Sensing of China. SPIE, Beijing, China, 712306, doi:  https://doi.org/10.1117/12.815552.CrossRefGoogle Scholar
  14. Zheng, W., C. Liu, Z. Y. Zeng, et al., 2007: A feasible atmospheric correction method to TM image. J. China Univ. Mining Technol., 17, 112–115, doi:  https://doi.org/10.1016/S1006-1266(07)60024-8.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina
  2. 2.Beijing Piesat Information Technology Co. Ltd.BeijingChina
  3. 3.Nanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations