Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 826–836 | Cite as

Asymmetry of Atmospheric Responses to Two-Type El Niño and La Niña over Northwest Pacific

  • Mingcheng Chen
  • Tim LiEmail author
  • Xiaohui Wang
Regular Article
  • 9 Downloads

Abstract

The mechanism for asymmetric atmospheric responses to the central Pacific (CP) El Niño and La Niña over the western North Pacific (WNP) is studied in this paper. The negative anomalies of rainfall over the key region of WNP are explained by diagnosing the column-integrated equations of moisture and moist static energy (MSE). It is revealed that the nonlinear advection of moist enthalpy is critical to introduce negative rainfall anomalies over the region. The anomalous easterly (westerly) in La Niña (CP El Niño) causes negative advection of anomalous moist enthalpy, inducing negative heating anomaly and an anticyclone anomaly in the WNP, which weakens (strengthens) the cyclone (anticyclone) in La Niña (CP El Niño). The MSE budget analysis shows a larger nonlinear term in CP El Niño than in eastern Pacific (EP) El Niño, inconsistent with the amplitudes of sea surface temperature anomalies. The reason is that the nonlinear term transforms to positive above 700 hPa in EP El Niño, offsetting the negative advection below 700 hPa and thus making the nonlinear term smaller. The nonlinear term is negative at low levels in CP El Niño, resulting in a larger nonlinear term. The stronger precipitation anomalies in the WNP during EP El Niño can be attributed to the linear moist enthalpy advection. The mean easterly wind at mid levels causes a larger (smaller) positive moist enthalpy advection in CP (EP) El Niño, due to a larger (smaller) moist enthalpy gradient, resulting in a positive (negative) linear moist enthalpy advection, which weakens (strengthens) the negative precipitation anomalies in the key region.

Key words

asymmetry La Niña eastern Pacific (EP) El Niño central Pacific (CP) El Niño moist enthalpy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007, doi:  https://doi.org/10.1029/2006JC003798.CrossRefGoogle Scholar
  2. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, doi:  https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.CrossRefGoogle Scholar
  3. Chang, C. P., Y. S. Zhang, and T. Li, 2000a: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325, doi:  https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.CrossRefGoogle Scholar
  4. Chang, C. P., Y. S. Zhang, and T. Li, 2000b: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 4326–4340, doi:  https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.CrossRefGoogle Scholar
  5. Chen, M. C., T. Li, X. Y. Shen, et al., 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 2201–2220, doi:  https://doi.org/10.1175/JCLI-D-15-0547.1.CrossRefGoogle Scholar
  6. Chen, S. F., W. Chen, and K. Wei, 2013: Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv. Atmos. Sci., 30, 1712–1724, doi:  https://doi.org/10.1007/s00376-013-2296-8.CrossRefGoogle Scholar
  7. Chen, W., S. Y. Ding, J. Feng, et al., 2018: Progress in the study of impacts of different types of ENSO on the East Asian monsoon and their mechanisms. Chinese J. Atmos. Sci., 42, 640–655, doi:  https://doi.org/10.3878/j.issn.1006-9895.1801.17248. (in Chinese)Google Scholar
  8. Chung, P. H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26, 361–379, doi:  https://doi.org/10.1175/JCLI-D-12-00106.1.CrossRefGoogle Scholar
  9. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  10. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi:  https://doi.org/10.1002/qj.49710644905.CrossRefGoogle Scholar
  11. Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 1769–1786, doi:  https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.CrossRefGoogle Scholar
  12. Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, doi:  https://doi.org/10.1175/2008JCLI2624.1.CrossRefGoogle Scholar
  13. Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:  https://doi.org/10.1029/2005GL022738.CrossRefGoogle Scholar
  14. Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 66, 285–314, doi:  https://doi.org/10.3319/TAO.2005.16.2.285(A).CrossRefGoogle Scholar
  15. Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006, doi:  https://doi.org/10.1007/s13351-017-7147-6.CrossRefGoogle Scholar
  16. Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds., Princeton University Press, Princeton, 267–301.Google Scholar
  17. Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 15, 3–12, doi:  https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.CrossRefGoogle Scholar
  18. Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, London, 289 pp, doi:  https://doi.org/10.1017/CBO9781107415324.004.Google Scholar
  19. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384, doi:  https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.CrossRefGoogle Scholar
  20. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi:  https://doi.org/10.1029/2002JD002670.CrossRefGoogle Scholar
  21. Tao, W. C., G. Huang, R. G. Wu, et al., 2017: Asymmetry in summertime atmospheric circulation anomalies over the northwest Pacific during decaying phase of El Niño and La Niña. Climate Dyn., 49, 2007–2023, doi:  https://doi.org/10.1077/s003822-016-3432-9.CrossRefGoogle Scholar
  22. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi:  https://doi.org/10.1175/11520-0442(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  23. Wang, X. H., T. Li, and M. C. Chen, 2019: Mechanism for asymmetric atmospheric responses in the western North Pacific to El Niño and La Niña. Climate Dyn., 1–13, doi:  https://doi.org/10.1007/s00382-019-04767-4.CrossRefGoogle Scholar
  24. Webster, P. J., V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans, 103, 14451–14510, doi:  https://doi.org/10.1029/97JC02719.CrossRefGoogle Scholar
  25. Wu, B., T. Li, and T. J. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 4807–4822, doi:  https://doi.org/10.1175/2010JCLI3222.1.CrossRefGoogle Scholar
  26. Wu, B., T. J. Zhou, and T. Li, 2017a: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621–9635, doi:  https://doi.org/10.1175/JCLI-D-16-0489.1.CrossRefGoogle Scholar
  27. Wu, B., T. J. Zhou, and T. Li, 2017b: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 9637–9650, doi:  https://doi.org/10.1175/JCLI-D-16-0495.1.CrossRefGoogle Scholar
  28. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 34, 49–62, doi:  https://doi.org/10.2151/jmsj1965.74.1_49.CrossRefGoogle Scholar
  29. Zheng, F., X. H. Fang, J. Y. Yu, et al., 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 7651–7657, doi:  https://doi.org/10.1002/2014GL062125.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science & TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations