Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 851–869 | Cite as

Development of Land Surface Model BCC_AVIM2.0 and Its Preliminary Performance in LS3MIP/CMIP6

  • Weiping LiEmail author
  • Yanwu Zhang
  • Xueli Shi
  • Wenyan Zhou
  • Anning Huang
  • Mingquan Mu
  • Bo Qiu
  • Jinjun Ji
Regular Article

Abstract

The improvements and validation of several parameterization schemes in the second version of the Beijing Climate Center Atmosphere-Vegetation Interaction Model (BCC_AVIM2.0) are introduced in this study. The main updates include a replacement of the water-only lake module by the common land model lake module (CoLM-lake) with a more realistic snow-ice-water-soil framework, a parameterization scheme for rice paddies added in the vegetation module, renewed parameterizations of snow cover fraction and snow surface albedo to accommodate the varied snow aging effect during different stages of a snow season, a revised parameterization to calculate the threshold temperature to initiate freeze (thaw) of soil water (ice) rather than being fixed at 0°C in BCC_AVIM1.0, a prognostic phenology scheme for vegetation growth instead of empirically prescribed dates for leaf onset/fall, and a renewed scheme to depict solar radiation transfer through the vegetation canopy. The above updates have been implemented in BCC_AVIM2.0 to serve as the land component of the BCC Climate System Model (BCC_CSM). Preliminary results of BCC_AVIM in the ongoing Land Surface, Snow, and Soil Moisture Model Intercomparison Project (LS3MIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) show that the overall performance of BCC_AVIM2.0 is better than that of BCC_AVIM1.0 in the simulation of surface energy budgets at the seasonal timescale. Comparing the simulations of annual global land average before and after the updates in BCC_AVIM2.0 reveals that the bias of net surface radiation is reduced from −12.0 to −11.7 W m−2 and the root mean square error (RMSE) is reduced from 20.6 to 19.0 W m−2; the bias and RMSE of latent heat flux are reduced from 2.3 to −0.1 W m−2 and from 15.4 to 14.3 W m−2, respectively; the bias of sensible heat flux is increased from 2.5 to 5.1 W m−2 but the RMSE is reduced from 18.4 to 17.0 W m−2.

Key words

BCC_AVIM2.0 LS3MIP CMIP6 surface radiation sensible heat flux latent heat flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Professor Shufen Sun of the Institute of Atmospheric Physics, Chinese Academy of Sciences for his constant support to the development of BCC_AVIM. We also thank the two reviewers for their valuable suggestions to improve the manuscript.

References

  1. Aoki, T., A. Hachikubo, and M. Hori, 2003: Effects of snow physical parameters on shortwave broadband albedos. J. Geophys. Res. Atmos., 108, 4616, doi:  https://doi.org/10.1029/2003JD003506.CrossRefGoogle Scholar
  2. Arora, V. K., and G. J. Boer, 2005: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol., 11, 39–59, doi:  https://doi.org/10.1111/j.1365-2486.2004.00890.x.CrossRefGoogle Scholar
  3. Arora, V. K., G. J. Boer, P. Friedlingstein, et al., 2013: Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J. Climate, 26, 5289–5314, doi:  https://doi.org/10.1175/JCLI-D-12-00494.1.CrossRefGoogle Scholar
  4. Avitabile, V., M. Herold, G. B. M. Heuvelink, et al., 2016: An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol., 22, 1406–1420, doi:  https://doi.org/10.1111/gcb.13139.CrossRefGoogle Scholar
  5. Bao, Y., Y. H. Gao, S. H. Lyu, et al., 2014: Evaluation of CMIP5 earth system models in reproducing leaf area index and vegetation cover over the Tibetan Plateau. J. Meteor. Res., 28, 1041–1060, doi:  https://doi.org/10.1007/s13351-014-4023-5.CrossRefGoogle Scholar
  6. Bonan, G. B., P. J. Lawrence, K. W. Oleson, et al., 2011: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from fluxnet data. J. Geophys. Res. Biogeosci., 116, G02014, doi:  https://doi.org/10.1029/2010JG001593.CrossRefGoogle Scholar
  7. Cao, M. K., and F. I. Woodward, 1998: Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob. Change Biol., 4, 185–198, doi:  https://doi.org/10.1046/j.1365-2486.1998.00125.x.CrossRefGoogle Scholar
  8. Chen, A. J., W. P. Li, W. J. Li, et al., 2014: An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France. Chinese Sci. Bull., 59, 4881–4889, doi:  https://doi.org/10.1007/s11434-014-0429-9.CrossRefGoogle Scholar
  9. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi:  https://doi.org/10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  10. Dai, Y. J., N. Wei, A. J. Huang, et al., 2018: The lake scheme of the common land model and its performance evaluation. Chinese Sci. Bull., 63, 3002–3021, doi:  https://doi.org/10.4360/N972018-00609. (in Chinese)CrossRefGoogle Scholar
  11. Dickinson, R. E., 1983: Land surface processes and climate-surface albedos and energy balance. Adv. Geophys., 25, 305–353, doi:  https://doi.org/10.1016/S0065-2687(08)60176-4.CrossRefGoogle Scholar
  12. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO, USA, 72 pp.Google Scholar
  13. Foley, J. A., I. C. Prentice, N. Ramankutty, et al., 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles, 10, 603–628, doi:  https://doi.org/10.1029/96GB02692.CrossRefGoogle Scholar
  14. Friedlingstein, P., M. Meinshausen, V. K. Arora, et al., 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate, 27, 511–526, doi:  https://doi.org/10.1175/JCLI-D-12-00579.1.CrossRefGoogle Scholar
  15. Huang, A. N., Lazhu, J. B. Wang, et al., 2019: Evaluating and improving the performance of three 1-D lake models in a large deep lake of the central Tibetan Plateau. J. Geophys. Res. Atmos., 124, 3143–3167, doi:  https://doi.org/10.1029/2018JD029610.CrossRefGoogle Scholar
  16. Ji, J. J., 1995: A climate-vegetation interaction model: Simulating physical and biological processes at the surface. J. Biogeogr., 22, 2063–2069.CrossRefGoogle Scholar
  17. Ji, J. J., M. Huang, and K. Li, 2008: Prediction of carbon exchange between China terrestrial ecosystem and atmosphere in 21st century. Sci. China Ser. D Earth Sci., 21, 885–898.CrossRefGoogle Scholar
  18. Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2013, doi:  https://doi.org/10.5194/bg-6-2001-2009.CrossRefGoogle Scholar
  19. Jung, M., M. Reichstein, H. A. Margolis, et al., 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci., 116, G00J07, doi:  https://doi.org/10.1029/2010JG001566.CrossRefGoogle Scholar
  20. Kato, S., N. G. Loeb, F. G. Rose, et al., 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 2719–2740, doi:  https://doi.org/10.1175/JCLI-D-12-00436.1.CrossRefGoogle Scholar
  21. Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145–160, doi:  https://doi.org/10.1007/s00382-007-0278-1.CrossRefGoogle Scholar
  22. Lawrence, D. M., P. E. Thornton, K. W. Oleson, et al., 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. J. Hydrometeor., 8, 862–880, doi:  https://doi.org/10.1175/JHM596.1.CrossRefGoogle Scholar
  23. Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst., 3, M03001, doi:  https://doi.org/10.1029/2011MS00045.Google Scholar
  24. Li, Q., and S. F. Sun, 2008: Development of the universal and simplified soil model coupling heat and water transport. Sci. China Ser. D Earth Sci., 21, 88–102, doi:  https://doi.org/10.1007/s11430-007-0153-2.CrossRefGoogle Scholar
  25. Li, Q., S. F. Sun, and Y. K. Xue, 2010: Analyses and development of a hierarchy of frozen soil models for cold region study. J. Geophys. Res. Atmos., 115, D03107, doi:  https://doi.org/10.1029/2009JD012530.Google Scholar
  26. Li, W. P., X. Liu, S. P. Nie, et al., 2009: Comparative studies of snow cover parameterization schemes used in climate models. Adv. Earth Sci., 24, 512–522, doi:  https://doi.org/10.1167/j.issn1001-8166.2009.05.0512. (in Chinese)Google Scholar
  27. Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modeling. Oxford University Press, London, 487 pp.Google Scholar
  28. Luo, S. Q., X. W. Fang, S. H. Lyu, et al., 2017: Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau. J. Meteor. Res., 31, 916–930, doi:  https://doi.org/10.1007/s13351-017-6063-0.CrossRefGoogle Scholar
  29. Malhi, Y., T. R. Baker, O. L. Phillips, et al., 2004: The above-ground coarse wood productivity of 104 neotropical forestplots. Glob. Change Biol., 10, 563–591, doi:  https://doi.org/10.1111/j.1529-8817.2003.00778.x.CrossRefGoogle Scholar
  30. Morin, S., Y. Lejeune, B. Lesaffre, et al., 2012: An 18-yr long (1993-2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth Syst. Sci. Data, 4, 13–21, doi:  https://doi.org/10.5194/essd-4-13-2012.CrossRefGoogle Scholar
  31. Mu, M. Q., F. Hoffman, D. Lawrence, et al., 2016: International Land Model Benchmarking (ILAMB) Package v001.00. Sponsored by the US DOE Office of Science (SC), Biological and Environmental Research (BER), doi:  https://doi.org/10.18139/ILAMB.v001.00/1251597. Available at https://doi.org/www.bgc-eeed-backs.org/software/10.18139/ILAMB.v001.00/.
  32. Mu, M. Q., and ILAMB team, 2019: Design and development of a community benchmark system for land surface models. Proc. International Workshop on Weather and Climate Variability and Their Mechanism, 7–9 August, Beijing, China, 337–356.Google Scholar
  33. Myneni, R. B., R. Ramakrishna, R. Nemani, et al., 1997: Estimation of global leaf area index and absorbed Par using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35, 1380–1393, doi:  https://doi.org/10.1109/36.649788.CrossRefGoogle Scholar
  34. Niu, G.-Y., and Z.-L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res. Atmos., 112, D21101, doi:  https://doi.org/10.1029/2007JD008674.CrossRefGoogle Scholar
  35. Oleson, K. W., Y. J. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR. National Center for Atmospheric Research, Boulder, CO, USA, 173 pp.Google Scholar
  36. Parton, W. J., J. W. B. Stewart, and C. V. Cole, 1988: Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry, 5, 109–131, doi:  https://doi.org/10.1007/BF02180320.CrossRefGoogle Scholar
  37. Roesch, A., M. Wild, H. Gilgen, et al., 2001: A new snow cover fraction parametrization for the ECHAM4 GCM. Climate Dyn., 17, 933–946, doi:  https://doi.org/10.1007/s003820100153.CrossRefGoogle Scholar
  38. Saatchi, S. S., N. L. Harris, S. Brown, et al., 2011: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA, 108, 9899–9904, doi:  https://doi.org/10.1073/pnas.1019576108.CrossRefGoogle Scholar
  39. Sellers, P. J., D. A. Randall, G. J. Collatz, et al., 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676–705, doi:  https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.CrossRefGoogle Scholar
  40. Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, doi:  https://doi.org/10.1175/JCLI3790.1.CrossRefGoogle Scholar
  41. Su, F. G., X. L. Duan, D. L. Chen, et al., 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187–3208, doi:  https://doi.org/10.1175/JCLI-D-12-00321.1.CrossRefGoogle Scholar
  42. Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, doi:  https://doi.org/10.1029/2011MS000072.CrossRefGoogle Scholar
  43. Sun, S. F., J. M. Jin, and Y. K. Xue, 1999: A simple snow-atmosphere-soil transfer model. J. Geophys. Res. Atmos., 104, 19,587–19,597, doi:  https://doi.org/10.1029/1999JD900305.CrossRefGoogle Scholar
  44. Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, et al., 2013: Causes of variation in soil carbon simulations from CMIP5 earth system models and comparison with observations. Biogeosciences, 10, 1717–1736, doi:  https://doi.org/10.5194/bg-10-1717-2013.CrossRefGoogle Scholar
  45. van den Hurk, B., H. Kim, G. Krinner, et al., 2016: LS3MIP (v1.0) contribution to CMIP6: The land surface, snow and soil moisture model intercomparison project—Aims, setup and expected outcome. Geosci. Model Dev., 9, 2809–2832, doi:  https://doi.org/10.5194/gmd-9-2809-2016.CrossRefGoogle Scholar
  46. Wang, C., Z. G. Wei, Z. C. Li, et al., 2017: Testing and improving the performance of the Common Land Model: A case study for the Gobi landscape. J. Meteor. Res., 31, 625–632, doi:  https://doi.org/10.1007/s13351-017-6080-z.CrossRefGoogle Scholar
  47. Wu, T. W., L. C. Song, W. P. Li, et al., 2013: Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J. Geophys. Res. Atmos., 118, 4326–4347, doi:  https://doi.org/10.1002/jgrd.50320.CrossRefGoogle Scholar
  48. Wu, T. W., L. C. Song, W. P. Li, et al., 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34–56, doi:  https://doi.org/10.1007/s13351-014-3041-7.Google Scholar
  49. Xia, K., and B. Wang, 2015: Evaluation and projection of snow cover fraction over Eurasia. Climatic Environ. Res., 20, 41–52, doi:  https://doi.org/10.3878/j.issn.1006-9585.2014.13126. (in Chinese)Google Scholar
  50. Xia, K., Y. Luo, and W. P. Li, 2011: Simulation of freezing and melting of soil on the northeast Tibetan Plateau. Chinese Sci. Bull., 56, 2145–2155, doi:  https://doi.org/10.1007/s11434-011-4542-8.CrossRefGoogle Scholar
  51. Xue, Y. K., S. F. Sun, D. S. Kahan, et al., 2003: Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J. Geophy. Res. Atmos., 108, 8859, doi:  https://doi.org/10.1029/2002JD003174.CrossRefGoogle Scholar
  52. Yang, Z.-L., R. E. Dickinson, A. Robock, et al., 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353–373, doi:  https://doi.org/10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2.CrossRefGoogle Scholar
  53. Zeng, X. B., M. Shaikh, Y. J. Dai, et al., 2002: Coupling of the common land model to the NCAR community climate model. J. Climate, 15, 1832–1854, doi:  https://doi.org/10.1175/11520-0442(2002)015<1832:COTCLM>2.0.CO;2.CrossRefGoogle Scholar
  54. Zhang, G., G. S. Zhou, and F. Chen, 2017: Analysis of parameter sensitivity on surface heat exchange in the Noah land surface model at a temperate desert steppe site in China. J. Meteor. Res., 31, 1167–1182, doi:  https://doi.org/10.1007/s13351-017-7050-1.CrossRefGoogle Scholar
  55. Zhou, W. Y., Y. Luo, W. P. Li, et al., 2018: Comparative studies of different radiation schemes within vegetation in a land model. Chinese Sci. Bull., 63, 2772–2784, doi:  https://doi.org/10.1360/N972018-00398. (in Chinese)CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Weiping Li
    • 1
    • 2
    Email author
  • Yanwu Zhang
    • 1
    • 2
  • Xueli Shi
    • 1
    • 2
  • Wenyan Zhou
    • 1
    • 2
  • Anning Huang
    • 2
    • 3
  • Mingquan Mu
    • 4
  • Bo Qiu
    • 2
    • 3
    • 5
  • Jinjun Ji
    • 6
  1. 1.Laboratory for Climate Studies, National Climate CenterChina Meteorological Administration (CMA)BeijingChina
  2. 2.CMA-NJU Joint Laboratory for Climate Prediction StudiesNanjing University (NJU)NanjingChina
  3. 3.Department of Atmospheric SciencesNanjing UniversityNanjingChina
  4. 4.Department of Earth System ScienceUniversity of California, IrvineIrvineUSA
  5. 5.Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System ScienceNanjing UniversityNanjingChina
  6. 6.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations