Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 925–933 | Cite as

Radiometric Cross-Calibration for Multiple Sensors with the Moon as an Intermediate Reference

  • Lu Zhang
  • Peng ZhangEmail author
  • Xiuqing Hu
  • Lin Chen
  • Min Min
  • Na Xu
  • Ronghua Wu
Regular Article
  • 1 Downloads

Abstract

The instrument cross-calibration is an effective way to assess the quality of satellite data. In this study, a new method is proposed to cross-calibrate the sensors among satellite instruments by using a RObotic Lunar Observatory (ROLO) model and Apollo sample reflectance in reflective solar bands (RSBs). The ROLO model acts as a transfer radiometer to bridge between the instruments. The reflective spectrum of the Apollo sample is used to compensate for the difference in the instrument’s relative spectral responses (RSRs). In addition, the double ratio between the observed lunar irradiance and the simulated lunar irradiance is used to reduce the difference in instrument lunar viewing and illumining geometry. This approach is applied to the Moderate Resolution Imaging Spectroradiometer (MODIS), the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), and the Advanced Land Imager (ALI) on board three satellites, respectively. The mean difference between MODIS and SeaWiFS is less than 3.14%, and the difference between MODIS and ALI is less than 4.75%. These results indicate that the proposed cross-calibration method not only compensates for the RSR mismatches but also reduces the differences in lunar observation geometry. Thus, radiance calibration of any satellite instrument can be validated with a reference instrument bridged by the moon.

Key words

radiometric cross-calibration multiple sensors calibration reference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge Dr. Tom Stone for making their ROLO lunar irradiance models publicly available and D. Y. Wang for providing the lunar irradiance of the satellite. We also thank the MODIS and SeaWiFS groups for freely providing their high-quality data.

References

  1. Angal, A., X. X. Xiong, A. S. Wu, et al., 2016: On-orbit performance and calibration improvements for the reflective solar bands of Terra and Aqua MODIS. Proc. SPIE, 9881, 98811F, doi:  https://doi.org/10.1117/12.2223912.CrossRefGoogle Scholar
  2. Barnes, R. A., R. E. Eplee, G. M. Schmidt, et al., 2001: Calibration of SeaWiFS. I. Direct techniques. Appl. Opt., 40, 6682–6700, doi:  https://doi.org/10.1364/AO.40.006682.CrossRefGoogle Scholar
  3. Cao, C. Y., X. Q. Wu, A. S. Wu, et al., 2007: Improving the SNO calibration accuracy for the reflective solar bands of AVHRR and MODIS. Proceedings Volume 6684, Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS, SPIE, San Diego, California, United States, 668408, doi:  https://doi.org/10.1117/12.735132.Google Scholar
  4. Chander, G., A. Angal, T. Choi, et al., 2013a: Radiometric cross-calibration of EO-1 ALI with L7 ETM+ and Terra MODIS sensors using near-simultaneous Desert Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 386–399, doi:  https://doi.org/10.1109/JSTARS.2013.2251999.CrossRefGoogle Scholar
  5. Chander, G., N. Mishra, D. L. Helder, et al., 2013b: Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens., 51, 1267–1281, doi:  https://doi.org/10.1109/TGRS.2012.2228007.CrossRefGoogle Scholar
  6. Chander, G., T. J. Hewison, N. Fox, et al., 2013c: Overview of intercalibration of satellite instruments. IEEE Trans. Geosci. Remote Sens., 11, 1056–1080, doi:  https://doi.org/10.1109/TGRS.2012.2228654.CrossRefGoogle Scholar
  7. Chen, L., P. Zhang, R. H. Wu, et al., 2018: Monitoring radiometric response change of visible band for FY-2 geostationary meteorological satellite by lunar target. J. Remote Sens., 22, 211–219, doi:  https://doi.org/10.11834/jrs.20186464. (in Chinese)Google Scholar
  8. Coman, E. O., B. L. Jolliff, and P. Carpenter, 2018: Mineralogy and chemistry of Ti-Bearing lunar soils: Effects on reflectance spectra and remote sensing observations. Icarus, 306, 243–255, doi:  https://doi.org/10.1016/j.icarus.2018.02.008.CrossRefGoogle Scholar
  9. Eplee, R. E. Jr., J. Q. Sun, G. Meister, et al., 2011: Cross calibration of SeaWiFS and MODIS using on-orbit observations of the Moon. Appl. Opt., 50, 120–133, doi:  https://doi.org/10.1364/AO.50.000120.CrossRefGoogle Scholar
  10. Eplee, R. E. Jr., G. Meister, F. S. Patt, et al., 2012: On-orbit calibration of SeaWiFS. Appl. Opt., 51, 8702–8730, doi:  https://doi.org/10.1364/AO.51.008702.CrossRefGoogle Scholar
  11. Henry, P., G. Chander, B. Fougnie, et al., 2013: Assessment of spectral band impact on intercalibration over desert sites using simulation based on EO-1 Hyperion data. IEEE Trans. Geosci. Remote Sens., 51, 1297–1308, doi:  https://doi.org/10.1109/TGRS.2012.2228210.CrossRefGoogle Scholar
  12. Kieffer, H. H., 1997: Photometric stability of the lunar surface. Icarus, 130, 323–327, doi:  https://doi.org/10.1006/icar.1997.5822.CrossRefGoogle Scholar
  13. Kieffer, H. H., and T. C. Stone, 2005: The spectral irradiance of the Moon. Astron. J., 129, 2887–2901, doi:  https://doi.org/10.1086/430185.CrossRefGoogle Scholar
  14. Miller, S. D., and R. E. Turner, 2009: A dynamic lunar spectral irradiance data set for NPOESS/VIIRS day/night band nighttime environmental applications. IEEE Trans. Geosci. Remote Sens., 47, 2316–2329, doi:  https://doi.org/10.1109/tgrs.2009.2012696.CrossRefGoogle Scholar
  15. Ohtake, M., C. M. Pieters, P. Isaacson, et al., 2013: One Moon, many measurements 3: Spectral reflectance. Icarus, 226, 364–374, doi:  https://doi.org/10.1016/j.icarus.2013.05.010.CrossRefGoogle Scholar
  16. Pieters, C. M., J. W. Boardman, M. Ohtake, et al., 2013: One Moon, many measurements 1: Radiance values. Icarus, 226, 951–963, doi:  https://doi.org/10.1016/j.icarus.2013.07.008.CrossRefGoogle Scholar
  17. Shao, X., C. Y. Cao, S. Uprety, et al., 2014: Comparing hyperion lunar observation with model calculations in support of GOES-R advanced baseline imager (ABI) calibration. Proceedings Volume 9218, Earth Observing Systems XIX, SPIE, San Diego, California, United States, 92181X, doi:  https://doi.org/10.1117/12.2062250.Google Scholar
  18. Stone, T. C., 2008: Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the moon. Proceedings Volume 7081, Earth Observing Systems XIII, SPIE, San Diego, California, United States, 70810X, doi:  https://doi.org/10.1117/12.795227.CrossRefGoogle Scholar
  19. Sun, J., X. Xiong, B. Guenther, et al., 2003: Radiometric stability monitoring of the MODIS reflective solar bands using the Moon. Metrologia, 40, S85–S88, doi:  https://doi.org/10.1088/0026-1394/40/1/319.CrossRefGoogle Scholar
  20. Teillet, P. M., G. Fedosejevs, R. P. Gauthier, et al., 2001: A generalized approach to the vicarious calibration of multiple Earth observation sensors using hyperspectral data. Remote Sens. Environ., 77, 304–327, doi:  https://doi.org/10.1016/S0034-4257(01)00211-5.CrossRefGoogle Scholar
  21. Teillet, P. M., G. Fedosejevs, K. J. Thome, et al., 2007: Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ., 114, 393–409, doi:  https://doi.org/10.1016/j.rse.2007.03.003.CrossRefGoogle Scholar
  22. Wang, L. K., M. Goldberg, X. Q. Wu, et al., 2011: Consistency assessment of atmospheric infrared sounder and infrared atmospheric sounding interferometer radiances: Double differences versus simultaneous nadir overpasses. J. Geophys. Res. Atmos., 116, D11111, doi:  https://doi.org/10.1029/2010JD014988.CrossRefGoogle Scholar
  23. Wu, R. H., P. Zhang, Z. D. Yang, et al., 2016: Monitor radiance calibration of the remote sensing instrument with reflected lunar irradiance. J. Remote Sens., 20, 278–289, doi:  https://doi.org/10.11834/jrs.20165155. (in Chinese)Google Scholar
  24. Xiong, X., K. Chiang, J. Esposito, et al., 2003: MODIS on-orbit calibration and characterization. Metrologia, 40, S89–S92, doi:  https://doi.org/10.1088/0026-1394/40/1/320.CrossRefGoogle Scholar
  25. Xiong, X. X., J. Q. Sun, W. Barnes, et al., 2007: Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 45, 879–889, doi:  https://doi.org/10.1109/tgrs.2006.890567.CrossRefGoogle Scholar
  26. Xiong, X. X., J. Sun, W. Barnes, et al., 2008: Intercomparison of on-orbit calibration consistency between Terra and Aqua MODIS reflective solar bands using the moon. IEEE Geosci. Remote Sens. Lett., 5, 778–782, doi:  https://doi.org/10.1109/LGRS.2008.2005591.CrossRefGoogle Scholar
  27. Xiong, X. X., A. Angal, J. Butler, et al., 2016: Global space-based inter-calibration system reflective solar calibration reference: From Aqua MODIS to S-NPP VIIRS. Proceedings Volume 9881, Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV, SPIE, New Delhi, India, 98811D, doi:  https://doi.org/10.1117/12.2224320.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Lu Zhang
    • 1
    • 2
    • 3
  • Peng Zhang
    • 3
    Email author
  • Xiuqing Hu
    • 3
  • Lin Chen
    • 3
  • Min Min
    • 3
  • Na Xu
    • 3
  • Ronghua Wu
    • 3
  1. 1.Nanjing University of Information Science & TechnologyNanjingChina
  2. 2.Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  3. 3.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations