Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 960–975 | Cite as

Improved Assimilation of Fengyun-3 Satellite-Based Snow Cover Fraction in Northeastern China

  • Shuai Zhang
  • Chunxiang ShiEmail author
  • Runping Shen
  • Jie Wu
Special Collection on Development and Applications of Regional and Global Land Data Assimilation Systems
  • 1 Downloads

Abstract

Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information, such as cloud contamination. In this paper, an improved approach is proposed to reduce the effects of observational errors during assimilation of snow cover fraction acquired by the Fengyun-3 (FY-3) satellite in northeastern China. A snow depth constraint was imposed on quality control of a snow depth product from a microwave radiation imager. The assimilation experiments were carried out before and after quality control (denoted as SCFDA and SCFDA_WSD, respectively). The snow cover fraction results were evaluated against the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products. When assimilating the snow cover fraction with the snow depth constraint (i.e., SCFDA_WSD), substantially larger improvement was obtained than that without such a constraint/quality control (SCFDA), and the deviation and root mean square error of the snow cover fraction were significantly reduced. The assimilation performance was also evaluated against in-situ snow depth observations. The SCFDA_WSD also showed greater improvements during the snow accumulation and snowmelt periods than the SCFDA. The SCFDA_WSD improvements in woodland and shrubland were the most obvious. At different altitudes, the effects of the SCFDA_WSD were basically equivalent, and the deeper the snow depth was, the better the effect. In addition, the SCFDA_WSD method was found in close agreement with the observations during a sudden snowfall event.

Key words

snow cover assimilation FY-3 satellite-based snow products snow cover fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreadis, K. M., and D. P. Lettenmaier, 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872–886, doi:  https://doi.org/10.1016/j.advwatres.2005.08.004.CrossRefGoogle Scholar
  2. Bai, Y. L., X. Li, and X. J. Han, 2011: A review of error problems for land data assimilation systems. Adv. Earth Sci., 26, 795–804, doi:  https://doi.org/10.11867/j.issn.1001-8166.2011.08.0795. (in Chinese)Google Scholar
  3. Che, T., 2006: Study on passive microwave remote sensing of snow and snow data assimilation method. Ph.D. dissertation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 62 pp. (in Chinese)Google Scholar
  4. Chen, F., 2005: Variability in global land surface energy budgets during 1987–1988 simulated by an off-line land surface model. Climate Dyn., 24, 667–684, doi:  https://doi.org/10.1007/s00382-004-0439-4.CrossRefGoogle Scholar
  5. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi:  https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.CrossRefGoogle Scholar
  6. Chen, F., K. Mitchell, J. Schaake, et al., 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos., 101, 7251–7268, doi:  https://doi.org/10.1029/95JD02165.CrossRefGoogle Scholar
  7. Chen, F., Z. Janjic, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale eta model. Bound.-Layrr Meteor., 85, 391–421, doi:  https://doi.org/10.1023/A:1000531001463.CrossRefGoogle Scholar
  8. Chen, H. S., Z. B. Sun, and W. J. Zhu, 2003: The effects of Eurasian snow cover anomaly on winter atmospheric general circulation. Part II: Model simulation. Chinese J. Atmos. Sci., 27, 847–860, doi:  https://doi.org/10.3878/j.issn.1006-9895.2003.05.06. (in Chinese)CrossRefGoogle Scholar
  9. Clark, M. P., A. G. Slater, A. P. Barrett, et al., 2006: Assimilation of snow covered area information into hydrologic and land-surface models. Adv. Water Resour., 29, 1209–1221, doi:  https://doi.org/10.1016/j.advwatres.2005.10.001.CrossRefGoogle Scholar
  10. Crow, W. T., and R. H. Reichle, 2008: Comparison of adaptive filtering techniques for land surface data assimilation. Water Resour. Res., 44, W08423, doi:  https://doi.org/10.1029/2008WR006883.CrossRefGoogle Scholar
  11. De Lannoy, G. J. M., R. H. Reichle, K. R. Arsenault, et al., 2012: Multiscale assimilation of advanced microwave scanning radiometer-EOS snow water equivalent and moderate resolution imaging spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, doi:  https://doi.org/10.1029/2011WR010588.CrossRefGoogle Scholar
  12. Dziubanski, D. J., and K. J. Franz, 2016: Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model. J. Hydrol., 540, 26–39, doi:  https://doi.org/10.1016/j.jhydro1.2016.05.046.CrossRefGoogle Scholar
  13. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Oceans, 99, 10, 143–10, 162, doi:  https://doi.org/10.1029/94JC00572.CrossRefGoogle Scholar
  14. Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367, doi:  https://doi.org/10.1007/s10236-003-0036-9.CrossRefGoogle Scholar
  15. Gao, R., H. L. Zhong, W. J. Dong, et al., 2011: Impact of snow cover and frozen soil in the Tibetan Plateau on summer precipitation in China. J. Glaciol. Geocryol., 33, 254–260. (in Chinese)Google Scholar
  16. Hall, D. K., and G. A. Riggs, 2007: Accuracy assessment of the MODIS snow products. Hydrol. Process., 21, 1534–1547, doi:  https://doi.org/10.1002/hyp.6715.CrossRefGoogle Scholar
  17. Hall, D. K., G. A. Riggs, V. V. Salomonson, et al., 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181–194, doi:  https://doi.org/10.1016/S0034-4257(02)00095-0.CrossRefGoogle Scholar
  18. Hu, Y. M., Y. H. Ding, and F. Liao, 2010: An improvement on summer regional climate simulation over East China: Importance of data assimilation of soil moisture. Chinese Sci. Bull., 55, 865–871, doi:  https://doi.org/10.1007/s11434-009-0285-1.CrossRefGoogle Scholar
  19. Jiang, L. M., P. Wang, L. X. Zhang, et al., 2014: Improvement of snow depth retrieval for FY3B-MWRI in China. Sci. China Earth Sci., 44, 1278–1292, doi:  https://doi.org/10.1007/s11430-013-4798-8.CrossRefGoogle Scholar
  20. Koren, V., J. Schaake, K. Mitchell, et al., 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res. Atmos., 104, 19569–19585, doi:  https://doi.org/10.1029/1999JD900232.CrossRefGoogle Scholar
  21. Kumar, S. V., 2015: Assimilation of passive microwave-based soil moisture and snow depth retrievals for drought estimation. Aerosp. Sci. Technol., 45, 284–293, doi:  https://doi.org/10.1016/j.ast.2015.05.021.CrossRefGoogle Scholar
  22. Kumar, S. V., C. D. Peters-Lidard, D. Mocko, et al., 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 2446–2469, doi:  https://doi.org/10.1175/JHM-D-13-0132.1.CrossRefGoogle Scholar
  23. Kumar, S. V., C. D. Peters-Lidard, K. R. Arsenault, et al., 2015: Quantifying the added value of snow cover area observations in passive microwave snow depth data assimilation. J. Hydrometeor., 16, 1736–1741, doi:  https://doi.org/10.1175/JHM-D155-0221.1.CrossRefGoogle Scholar
  24. Li, H. Y., and J. Wang, 2013: Key research topics and their advances on modeling snow hydrological processes. J. Glaciol. Geocryol., 35, 430–437, doi:  https://doi.org/10.7522/j.issn.1000-0240.2013.0051. (in Chinese)Google Scholar
  25. Li, P. J., and D. S. Mi, 1983: Distribution of snow cover in China. J. Glaciol. Geocryol., 5, 9–18. (in Chinese)Google Scholar
  26. Lin, P. R., J. F. Wei, Z.-L. Yang, et al., 2016: Snow data assimilation-constrained land initialization improves seasonal temperature prediction. Geophys. Res. Lett., 43, 11423–11432, doi:  https://doi.org/10.1002/2016GL070966.CrossRefGoogle Scholar
  27. Liu, X., X. Jin, and C. Q. Ke, 2014: Accuracy evaluation of the IMS snow and ice products in stable snow covers regions in China. J. Glaciol. Geocryol., 36, 500–507, doi:  https://doi.org/10.7522/j.issn.1000-0240.2014.0060.Google Scholar
  28. Liu, X. J., L. M. Jiang, S. L. Wu, et al., 2018: Assessment of methods for passive microwave snow cover mapping using FY-3C5MWRI data in China. Remote Sens., 10, 524, doi:  https://doi.org/10.3390/rs10040524.CrossRefGoogle Scholar
  29. Liu, Y. Q., and H. V. Gupta, 2007: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res., 43, W07401, doi:  https://doi.org/10.1029/2006WR005756.Google Scholar
  30. Liu, Y. Q., C. D. Peters-Lidard, S. Kumar, et al., 2013: Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour., 54, 208–227, doi:  https://doi.org/10.1016/j.advwatres.2013.02.005.CrossRefGoogle Scholar
  31. Mocko, D. M., C. D. Peters-Lidard, S. Kumar, et al., 2012: Changes to drought metrics within the North American Land Data Assimilation System (NLDAS) from the assimilation of soil moisture and snow. AGU Fall Meeting. Available at https://doi.org/adsabs.harvard.edu/abs/2012AGUFM.H31L.07M.
  32. Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479–510, doi:  https://doi.org/10.1002/joc.893.CrossRefGoogle Scholar
  33. Qian, Y.-F., Y. Zhang, and Y.-Q. Zheng, 2003: Impacts of the Tibetan Plateau snow anomaly in winter and spring on precipitation in China in spring and summer. Arid Meteor., 21, 1–7. (in Chinese)Google Scholar
  34. Reichle, R. H., 2008: Data assimilation methods in the Earth sciences. Adv. Water Resour., 31, 1411–1418, doi:  https://doi.org/10.1016/j.advwatres.2008.01.001.CrossRefGoogle Scholar
  35. Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103–114, doi:  https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2.CrossRefGoogle Scholar
  36. Sellers, P. J., R. E. Dickinson, D. A. Randall, et al., 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Scincce, 275, 502–509, doi:  https://doi.org/10.1126/science.275.5299.502.CrossRefGoogle Scholar
  37. Shi, C. X., S. Zhang, S. Sun, et al., 2018: Effect of improved precipitation CLDAS on snow simulation in China. Meteor. Mon., 44, 985–997, doi:  https://doi.org/10.7519/j.issn.1000-0526.2018.08.001. (in Chinese)Google Scholar
  38. Stevenson, M., 2006: Book review on Ian T. Jolliffe, David B. Stephenson, Forecast Verification: A Practitioner’s Guide in Atmospheric Science, John Wiley and Sons, Chichester (2003), ISBN: 0-471-49759-2. Int. J. Forecasting, 22, 403–405, doi:  https://doi.org/10.1016/j.ijforecast.2005.11.002.CrossRefGoogle Scholar
  39. Stigter, E. E., N. Wanders, T. M. Saloranta, et al., 2017: Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere, 11, 1647–1664, doi:  https://doi.org/10.5194/tc-11-1647-2017.CrossRefGoogle Scholar
  40. Su, H., Z. L. Yang, G.-Y. Niu, et al., 2008: Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. J. Geophys. Res. Atmos., 113, D08120, doi:  https://doi.org/10.1029/2007JD009232.Google Scholar
  41. Toure, A. M., R. H. Reichle, B. A. Forman, et al., 2018: Assimilation of MODIS snow cover fraction observations into the NASA catchment land surface model. Remote Sens., 10, 316, doi:  https://doi.org/10.3390/rs10020316.CrossRefGoogle Scholar
  42. von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, 3–10.Google Scholar
  43. Wang, H. W., C. L. Huang, J. L. Hou, et al., 2016: Estimation of snow depth from multi-source data fusion based on data assimilation algorithm. Geomatics Inf. Sci. Wuhan Univ., 40, 848–852, doi:  https://doi.org/10.13203/j.whugis20140568. (in Chinese)Google Scholar
  44. Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Elsevier/Academic Press, Amsterdam, 380 pp.Google Scholar
  45. Wu., S. L., C. Liu, and J. Chen, 2018: Overview of FY-3 snow monitoring products and applications in remote sensing service. Aerosp. Shanghai, 35, 60–65, doi:  https://doi.org/10.19328/j.cnki.1006-1630.2018.02.007. (in Chinese)Google Scholar
  46. Xia Y. L., Z. C. Hao, C. X. Shi, et al., 2019: Regional and global land data assimilation systems: Innovations, challenges, and prospects. J. Meteor. Res., 33, 159–189, doi:  https://doi.org/10.1007/s13351-019-8172-4.CrossRefGoogle Scholar
  47. Xiao, L., and T. Che, 2015: Preliminary study on snow feedback to the climate system in the Tibetan Plateau. Remote Sens. Technol. Appl., 30, 1066–1075, doi:  https://doi.org/10.11873/j.issn.1004-0323.2015.6.1066. (in Chinese)Google Scholar
  48. Xu, J. H., and H. Shu, 2016: DEnKF-based assimilation of MOD-IS-derived snow cover products into common land model considering the model sub-grid heterogeneity. Geomatics Inf. Sci. Wuhan Univ., 11, 156–162, doi:  https://doi.org/10.13203/j.whugis20140039.Google Scholar
  49. Xu, L. Y., and B. Y. Wu, 2012a: Two physical effects of Eurasian snow cover on the late-spring and early-summer rainfall in South China of 2010. Chinese J. Atmos. Sci., 31, 271–282, doi:  https://doi.org/10.3878/j.issn.1006-9895.2011.11054. (in Chinese)Google Scholar
  50. Xu, L. Y., and B. Y. Wu, 2012b: Relationship between Eurasian snow cover and late-spring and early-summer rainfall in China in 2010. Plateau Meteor., 31, 706–714. (in Chinese)Google Scholar
  51. Yang, F., H. Lu., K. Yang., et al., 2017: Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci., 21, 5805–5821, doi:  https://doi.org/10.5194/hess-21-5805-2017.CrossRefGoogle Scholar
  52. Yang, K., T. T. Hu, and C. H. Wang, 2017: A numerical study on the relationship between the spring-winter snow cover anomalies over the northern and southern Tibetan Plateau and summer precipitation in East China. Chinese J. Atmos. Sci., 41, 345–356, doi:  https://doi.org/10.3878/j.issn.1009-9891.1601.16119. (in Chinese)Google Scholar
  53. Yang, Z.-L., 2004: Modeling land surface processes in short-term weather and climate studies. Observation, Theory and Modeling of Atmospheric Variability, X. Zhu, X. F. Li, M. Cai, et al., Eds., Singapore, World Scientific, 288–313, doi:  https://doi.org/10.1142/9789812791139_0014.CrossRefGoogle Scholar
  54. Yatheendradas, S., C. D. Peters Lidard, V. Koren, et al., 2012: Distributed assimilation of satellite-based snow extent for improving simulated streamflow in mountainous, dense forests: An example over the DMIP2 western basins. Water Resour. Res., 48, W09557, doi:  https://doi.org/10.1029/2011WR011347.CrossRefGoogle Scholar
  55. Zhang, R. H., R. N. Zhang, and Z. Y. Zuo, 2016: An overview of wintertime snow cover characteristics over China and the impact of Eurasian snow cover on Chinese climate. J. Appl. Meteor. Sci., 27, 513–526, doi:  https://doi.org/10.11898/1001-7313.20160501. (in Chinese)Google Scholar
  56. Zhang, R. N., R. H. Zhang, and Z. Y. Zuo, 2015: Winter snow cover variability over China and its relation to Arctic Oscillation. Chinese J. Atmos. Sci., 39, 634–642, doi:  https://doi.org/10.3878/j.issn.1006-9895.1405.14170. (in Chinese)Google Scholar
  57. Zhang, S., C. X. Shi, X. Liang, et al., 2018: Assessment of FY-3 snow cover product. Remote Sens. Technol. Appl., 33, 35–46, doi:  https://doi.org/10.11873/j.issn.1004-0323.2018.1.0035. (in Chinese)Google Scholar
  58. Zhang, X.-T., X.-D. Huang, T.-G. Liang, et al., 2008: Accuracy analysis for MODIS snow data of MOD10A1 in a pastoral area in northern Xinjiang. Acta Pratacult. Sinica, 17, 110–117, doi:  https://doi.org/10.3221/j.issn:1004-5759.2008.02.2016. (in Chinese)Google Scholar
  59. Zhang, Y.-F., T. J. Hoar, Z.-L. Yang, et al., 2014: Assimilation of MODIS snow cover through the data assimilation research testbed and the community land model version 4. J. Geophys. Res. Atmos., 119, 7091–7103, doi:  https://doi.org/10.1002/2013JD021329.CrossRefGoogle Scholar
  60. Zhang, Y. H., W. Ren, T. Cao, et al., 2015: Method of snow multi-threshold comprehensive discrimination with FY-3/VIRR data. Remote Sens. Technol. Appl., 30, 1076–1084, doi:  https://doi.org/10.11873/j.issn.1004-0323.2015.6.1076. (in Chinese)Google Scholar
  61. Zuo, Z. Y., and R. H. Zhang, 2012: The anomalies of spring rainfall in China and its relation with tropical pacific SST and Eurasian snow. Chinese J. Atmos. Sci., 36, 185–194, doi:  https://doi.org/10.3878/j.issn.1006-9895.2012.01.14. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Shuai Zhang
    • 1
  • Chunxiang Shi
    • 1
    • 2
    Email author
  • Runping Shen
    • 1
  • Jie Wu
    • 3
  1. 1.School of Geographic SciencesNanjing University of Information Science & TechnologyNanjingChina
  2. 2.National Meteorological Information CenterChina Meteorological AdministrationBeijingChina
  3. 3.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations