Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 905–913 | Cite as

Influence of High Relative Humidity on Secondary Organic Carbon: Observations at a Background Site in East China

  • Linlin LiangEmail author
  • Guenter Engling
  • Yuan Cheng
  • Xiaoye Zhang
  • Junying Sun
  • Wanyun Xu
  • Chang Liu
  • Gen Zhang
  • Hui Xu
  • Xuyan Liu
  • Qianli Ma
Regular Article

Abstract

To investigate the impacts of relative humidity (RH) on secondary organic aerosol (SOA) concentrations and chemical reactions, the carbonaceous aerosol components [i.e., organic carbon (OC) and element carbon (EC)] were quantified in daily PM2.5 samples collected at a background site in East China during summer 2015. Based on the method of EC-tracer, the concentration of secondary organic carbon (SOC) demonstrated an obvious negative relationship with RH higher than 60%. Moreover, the ratio of SOC/EC also exhibited obvious decreasing trends with increasing RH, indicating negative effects for chemical production of SOA under high RH conditions. Due to high RH, photochemistry was weakened, gaseous oxidant concentrations was lowered (e.g., significantly decreased O3 levels), and the production rates of SOA were relatively low. On the other hand, because of more water uptake under higher RH conditions, the aerosol droplet acidity was reduced and enhancement of SOA formation by acidity was accordingly absent. In addition, high RH also plays an important role in changing viscosity of pre-existing aerosol coatings, which can affect reactive uptake yield of SOA. Overall, the results from this study imply that SOA production may be more associated with photochemical processes, while aqueous-phase chemistry is not very important for some SOA formation in a moist ambient environment. In the ambient atmosphere, oxidant concentrations, reaction rates, airborne species, etc., are highly variable. How do these factors affect SOA yields under given ambient environment warrants further detailed investigations.

Key words

relative humidity organic aerosol secondary organic carbon (SOC) photochemistry aqueous-phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

Financial support was also provided partly by the Ministry of Science and Technology (MOST) of Taiwan, China (MOST 103-2113-M-007-005). We are grateful to Professor Xiaobin Xu for providing the O3 and CO data.

References

  1. Bougiatioti, A., P. Nikolaou, I. Stavroulas, et al., 2016: Particle water and pH in the eastern Mediterranean: Source variability and implications for nutrient availability. Atmos. Chem. Phys., 16, 4579–4591, doi:  https://doi.org/10.5194/acp-16-4579-2016.CrossRefGoogle Scholar
  2. Boyd, C. M., J. Sanchez, L. Xu, et al., 2015: Secondary organic aerosol formation from the β-pinene+NO3 system: Effect of humidity and peroxy radical fate. Atmos. Chem. Phys., 15, 7497–7522, doi:  https://doi.org/10.5194/acp-15-7497-2015.CrossRefGoogle Scholar
  3. Chen, C.-L., S. J. Chen, L. M. Russell, et al., 2018: Organic aerosol particle chemical properties associated with residential burning and fog in wintertime San Joaquin Valley (Fresno) and with vehicle and firework emissions in summertime South Coast Air Basin (Fontana). J. Geophys. Res. Atmos., 123, 10707–10731, doi:  https://doi.org/10.1029/2018JD028374.CrossRefGoogle Scholar
  4. Cheng, Y., K. B. He, Z. Y. Du, et al., 2015: Humidity plays an important role in the PM2.5 pollution in Beijing. Environ. Pollut., 197, 68–75, doi:  https://doi.org/10.1016/j.envpol.2014.11.028.CrossRefGoogle Scholar
  5. Chow, J. C., J. G. Watson, Z. Q. Lu, et al., 1996: Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos. Environ., 30, 2079–2112, doi:  https://doi.org/10.1016/1352-2310(95)00402-5.CrossRefGoogle Scholar
  6. Ding, X., M. Zheng, L. P. Yu, et al., 2008: Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the southeastern United States. Environ. Sci. Technol., 42, 5171–5176, doi:  https://doi.org/10.1021/es7032636.CrossRefGoogle Scholar
  7. Dominguez-Taylor, P., L. G. Ruiz-Suarez, I. Rosas-Perez, et al., 2007: Monoterpene and isoprene emissions from typical tree species in forests around Mexico City. Atmos. Environ., 41, 2780–2790, doi:  https://doi.org/10.1016/j.atmosenv.2006.11.042.CrossRefGoogle Scholar
  8. Ervens, B., and R. Volkamer, 2010: Glyoxal processing by aerosol multiphase chemistry: Towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys., 10, 8219–8244, doi:  https://doi.org/10.5194/acp-10-8219-2010.CrossRefGoogle Scholar
  9. Ervens, B., B. J. Turpin, and R. J. Weber, 2011: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys., 11, 11069–11102, doi:  https://doi.org/10.5194/acp-11-11069-2011.CrossRefGoogle Scholar
  10. Ervens, B., A. Sorooshian, Y. B. Lim, et al., 2014: Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA). J. Geophys. Res. Atmos., 119, 3997–4016, doi:  https://doi.org/10.1002/2013JD021021.CrossRefGoogle Scholar
  11. Gaston, C. J., T. P. Riedel, Z. F. Zhang, et al., 2014: Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol., 48, 11178–11186, doi:  https://doi.org/10.1021/es5034266.CrossRefGoogle Scholar
  12. Ge, X. L., Q. Zhang, Y. L. Sun, et al., 2012: Effect of aqueousphase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environ. Chem., 9, 221–235, doi:  https://doi.org/10.1071/EN11168.CrossRefGoogle Scholar
  13. Ge, X. L., L. Li, Y. F. Chen, et al., 2017: Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environ. Pollut., 225, 74–85, doi:  https://doi.org/10.1016/j.envpol.2017.03.044.CrossRefGoogle Scholar
  14. Grayson, J. W., Y. Zhang, A. Mutzel, et al., 2016: Effect of varying experimental conditions on the viscosity of α-pinene derived secondary organic material. Atmos. Chem. Phys., 16, 6027–6040, doi:  https://doi.org/10.5194/acp-16-6027-2016.CrossRefGoogle Scholar
  15. Guo, H., L. Xu, A. Bougiatioti, et al., 2015: Fine-particle water and pH in the southeastern United States. Atmos. Chem. Phys., 15, 5211–5228, doi:  https://doi.org/10.5194/acp-15-5211-2015.CrossRefGoogle Scholar
  16. Hallquist, M., J. C. Wenger, U. Baltensperger, et al., 2009: The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys., 9, 5155–5236, doi:  https://doi.org/10.5194/acp-9-5155-2009.CrossRefGoogle Scholar
  17. He, Q. F., X. Ding, X. X. Fu, et al., 2018: Secondary organic aerosol formation from isoprene epoxides in the Pearl River Delta, South China: IEPOX- and HMML-derived tracers. J. Geophys. Res. Atmos., 123, 6999–7012, doi:  https://doi.org/10.1029/2017JD028242.CrossRefGoogle Scholar
  18. Heald, C. L., and D. V. Spracklen, 2009: Atmospheric budget of primary biological aerosol particles from fungal spores. Geophys. Res. Lett., 36, L09806, doi:  https://doi.org/10.1029/2009GL037493.CrossRefGoogle Scholar
  19. Hennigan, C. J., J. Izumi, A. P. Sullivan, et al., 2015: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys., 15, 2775–2790, doi:  https://doi.org/10.5194/acp-15-2775-2015.CrossRefGoogle Scholar
  20. Jia, L., and Y. F. Xu, 2016: Ozone and secondary organic aerosol formation from Ethylene-NOx-NaCl irradiations under different relative humidity conditions. J. Atmos. Chem., 73, 81–100, doi:  https://doi.org/10.1007/s10874-015-9317-1.CrossRefGoogle Scholar
  21. Kanakidou, M., J. H. Seinfeld, S. N. Pandis, et al., 2005: Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys., 5, 1053–1123, doi:  https://doi.org/10.5194/acp-5-1053-2005.CrossRefGoogle Scholar
  22. Kaul, D. S., T. Gupta, S. N. Tripathi, et al., 2011: Secondary organic aerosol: A comparison between foggy and nonfoggy days. Environ. Sci. Technol., 45, 7307–7313, doi:  https://doi.org/10.1021/es201081d.CrossRefGoogle Scholar
  23. Liang, L. L., G. Engling, Z. Y. Du, et al., 2016: Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China. Chemosphere, 150, 365–377, doi:  https://doi.org/10.1016/j.chemosphere.2016.02.002.CrossRefGoogle Scholar
  24. Liang, L. L., G. Engling, X. Y. Zhang, et al., 2017: Chemical characteristics of PM2.5 during summer at a background site of the Yangtze River Delta in China. Atmos. Res., 198, 163–172, doi:  https://doi.org/10.1016/j.atmosres.2017.08.012.CrossRefGoogle Scholar
  25. Lim, H. J., and B. J. Turpin, 2002: Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta Supersite Experiment. Environ. Sci. Technol., 36, 4489–4496, doi:  https://doi.org/10.1021/es0206487.CrossRefGoogle Scholar
  26. Lim, Y. B., Y. Tan, M. J. Perri, et al., 2010: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys., 10, 10521–10539, doi:  https://doi.org/10.5194/acp-10-10521-2010.CrossRefGoogle Scholar
  27. Lin, Y. H., Z. F. Zhang, K. S. Docherty, et al., 2012: Isoprene epoxydiols as precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with authentic compounds. Environ. Sci. Technol., 66, 250–258, doi:  https://doi.org/10.1021/es202554c.CrossRefGoogle Scholar
  28. Liu, M. X., Y. Song, T. Zhou, et al., 2017: Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett., 44, 5213–5221, doi:  https://doi.org/10.1002/2017GL073210.CrossRefGoogle Scholar
  29. Monson, R. K., P. C. Harley, M. E. Litvak, et al., 1994: Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia, 99, 260–270, doi:  https://doi.org/10.1007/BF00627738.CrossRefGoogle Scholar
  30. Nguyen, T. B., P. J. Roach, J. Laskin, et al., 2011: Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmos. Chem. Phys., 11, 6931–6944, doi:  https://doi.org/10.5194/acp-11-6931-2011.CrossRefGoogle Scholar
  31. Paulot, F., J. D. Crounse, H. G. Kjaergaard, et al., 2009: Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science, 325, 730–733, doi:  https://doi.org/10.1126/science.1172910.CrossRefGoogle Scholar
  32. Renbaum-Wolff, L., J. W. Grayson, A. P. Bateman, et al., 2013: Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity. Proc. Natl. Acad. Sci. USA, 110, 8014–8019, doi:  https://doi.org/10.1073/pnas.1219548110.CrossRefGoogle Scholar
  33. Riedel, T. P., Y. H. Lin, S. H. Budisulistiorini, et al., 2015: Heterogeneous reactions of isoprene-derived epoxides: Reaction probabilities and molar secondary organic aerosol yield estimates. Environ. Sci. Technol. Lett., 2, 38–42, doi:  https://doi.org/10.1021/ez500406f.CrossRefGoogle Scholar
  34. Sun, Y. L., Z. F. Wang, P. Q. Fu, et al., 2013: The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ., 77, 927–934, doi:  https://doi.org/10.1016/j.atmosenv.2013.06.019.CrossRefGoogle Scholar
  35. Sun, Y. L., Q. Jiang, Z. F. Wang, et al., 2014: Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res. Atmos., 119, 4380–4398, doi:  https://doi.org/10.1002/2014JD021641.CrossRefGoogle Scholar
  36. Surratt, J. D., A. W. H. Chan, N. C. Eddingsaas, et al., 2010: Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA, 107, 6640–6645, doi:  https://doi.org/10.1073/pnas.0911114107.CrossRefGoogle Scholar
  37. Varutbangkul, V., F. J. Brechtel, R. Bahreini, et al., 2006: Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmos. Chem. Phys., 6, 2367–2388, doi:  https://doi.org/10.5194/acp-6-2367-2006.CrossRefGoogle Scholar
  38. Wang, D. F., B. Zhou, Q. Y. Fu, et al., 2016: Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: Observations at a rural site in eastern Yangtze River Delta of China. Sci. Total Environ., 571, 1454–1466, doi:  https://doi.org/10.1016/j.scitotenv.2016.06.212.CrossRefGoogle Scholar
  39. Wong, J. P. S., S. M. Zhou, and J. P. D. Abbatt, 2015: Changes in secondary organic aerosol composition and mass due to photolysis: Relative humidity dependence. J. Phys. Chem. A, 119, 4309–4316, doi:  https://doi.org/10.1021/jp506898c.CrossRefGoogle Scholar
  40. Wu, Y. Z., X. L. Ge, J. F. Wang, et al., 2018: Responses of secondary aerosols to relative humidity and photochemical activities in an industrialized environment during late winter. Atmos. Environ., 193, 66–78, doi:  https://doi.org/10.1016/j.atmoeenv.2018.09.008.CrossRefGoogle Scholar
  41. Zhang, H., J. D. Surratt, Y. H. Lin, et al., 2011: Effect of relative humidity on SOA formation from isoprene/NO photooxidation: Enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions. Atmos. Chem. Phys., 11, 6411–6424, doi:  https://doi.org/10.5194/acp-11-6411-2011.CrossRefGoogle Scholar
  42. Zhang, H. F., Z. F. Zhang, T. Q. Cui, et al., 2014: Secondary organic aerosol formation via 2-methyl-3-buten-2-ol photooxidation: Evidence of acid-catalyzed reactive uptake of epoxides. Environ. Sci. Technol. Lett, 1, 242–247, doi:  https://doi.org/10.1021/ez500055f.CrossRefGoogle Scholar
  43. Zhang, Q., J. L. Jimenez, M. R. Canagaratna, et al., 2007: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett., 34, L13801, doi:  https://doi.org/10.1029/2007GL029979.Google Scholar
  44. Zhang, X. L., J. M. Liu, E. T. Parker, et al., 2012: On the gasparticle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon. J. Geophys. Res. Atmos., 117, D00V16, doi:  https://doi.org/10.1029/2012JD017908.Google Scholar
  45. Zhang, Y., Y. Z. Chen, A. T. Lambe, et al., 2018: Effect of the aerosol-phase state on secondary organic aerosol formation from the reactive uptake of isoprene-derived epoxydiols (IEPOX). Environ. Sci. Technol. Lett., 5, 167–174, doi:  https://doi.org/10.1021/acs.estlett.8b00044.CrossRefGoogle Scholar
  46. Zhao, J., N. P. Levitt, R. Y. Zhang, et al., 2006: Heterogeneous reactions of methylglyoxal in acidic media: Implications for secondary organic aerosol formation. Environ. Sci. Technol., 40, 7682–7687, doi:  https://doi.org/10.1021/es060610k.CrossRefGoogle Scholar
  47. Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983, doi:  https://doi.org/10.5194/acp-15-2969-2015.CrossRefGoogle Scholar
  48. Zhou, Y., H. F. Zhang, H. M. Parikh, et al., 2011: Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: Water and particle seed effects (II). Atmos. Environ., 45, 3882–3890, doi:  https://doi.org/10.1016/j.atmosenv.2010.12.048.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Linlin Liang
    • 1
    • 2
    Email author
  • Guenter Engling
    • 3
    • 4
  • Yuan Cheng
    • 5
  • Xiaoye Zhang
    • 1
  • Junying Sun
    • 1
  • Wanyun Xu
    • 1
  • Chang Liu
    • 1
  • Gen Zhang
    • 1
  • Hui Xu
    • 1
  • Xuyan Liu
    • 6
  • Qianli Ma
    • 7
  1. 1.State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  2. 2.State Environmental Protection Key Laboratory of Sources and Control of Air Pollution ComplexBeijingChina
  3. 3.Division of Atmospheric SciencesDesert Research InstituteRenoUSA
  4. 4.California Air Resources BoardEl MonteUSA
  5. 5.School of EnvironmentHarbin Institute of TechnologyHarbinChina
  6. 6.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina
  7. 7.Lin’an Regional Atmosphere Background StationLin’anChina

Personalised recommendations