Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 837–850 | Cite as

Seasonal Climate Prediction Models for the Number of Landfalling Tropical Cyclones in China

  • Baoqiang Tian
  • Ke FanEmail author
Regular Article
  • 4 Downloads

Abstract

Two prediction models are developed to predict the number of landfalling tropical cyclones (LTCs) in China during June-August (JJA). One is a statistical model using preceding predictors from the observation, and the other is a hybrid model using both the aforementioned preceding predictors and concurrent summer large-scale environmental conditions from the NCEP Climate Forecast System version 2 (CFSv2). (1) For the statistical model, the year-to-year increment method is adopted to analyze the predictors and their physical processes, and the JJA number of LTCs in China is then predicted by using the previous boreal summer sea surface temperature (SST) in Southwest Indonesia, preceding October South Australia sea level pressure, and winter SST in the Sea of Japan. The temporal correlation coefficient between the observed and predicted number of LTCs during 1983–2017 is 0.63. (2) For the hybrid prediction model, the prediction skill of CFSv2 initiated each month from February to May in capturing the relationships between summer environmental conditions (denoted by seven potential factors: three steering factors and four genesis factors) and the JJA number of LTCs is firstly evaluated. For the 2- and 1-month leads, CFSv2 has successfully reproduced these relationships. For the 4-, 3-, and 2-month leads, the predictor of geopotential height at 500 hPa over the western North Pacific (WNP) shows the worst forecasting skill among these factors. In general, the summer relative vorticity at 850 hPa over the WNP is a modest predictor, with stable and good forecasting skills at all lead times.

Key words

tropical cyclone Climate Forecast System version 2 (CFSv2) year-to-year increment prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Au-Yeung, A. Y. M., and J. C. L. Chan, 2012: Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific. Climate Dyn., 39, 783–794, doi:  https://doi.org/10.1007/s00382-011-1268-x.CrossRefGoogle Scholar
  2. Chan, J. C. L., K. S. Liu, M. Xu, et al., 2012: Variations of frequency of landfalling typhoons in East China, 1450–1949. Int. J. Climatol., 32, 1946–1950, doi:  https://doi.org/10.1002/joc.2410.CrossRefGoogle Scholar
  3. Chen, D., H. J. Wang, J. P. Liu, et al., 2015: Why the spring North Pacific Oscillation is a predictor of typhoon activity over the Western North Pacific. Int. J. Climatol., 35, 3353–3361, doi:  https://doi.org/10.1002/joc.4213.CrossRefGoogle Scholar
  4. Chen, T. C., S. Y. Wang, and M. C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 5709–5720, doi:  https://doi.org/10.1175/JCLI3934.1.CrossRefGoogle Scholar
  5. Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific. J. Climate, 15, 2934–2944, doi:  https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.CrossRefGoogle Scholar
  6. Choi, K. S., J. Y. Moon, D. W. Kim, et al., 2010: Seasonal prediction of tropical cyclone genesis frequency over the western North Pacific using teleconnection patterns. Theor. Appl. Climatol., 100, 191–206, doi:  https://doi.org/10.1007/s00704-009-0182-1.CrossRefGoogle Scholar
  7. Choi, K. S., C. C. Wu, and Y. Q. Wang, 2014: Seasonal prediction for tropical cyclone frequency around Taiwan using teleconnection patterns. Theor. Appl. Climatol., 116, 501–514, doi:  https://doi.org/10.1007/s00704-013-0954-5.CrossRefGoogle Scholar
  8. Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75–104, doi:  https://doi.org/10.1146/annurev.earth.31.100901.141259.CrossRefGoogle Scholar
  9. Fan, K., 2007: New predictors and a new prediction model for the typhoon frequency over western North Pacific. Sci. China Ser. D: Earth Sci., 50, 1417–1423, doi:  https://doi.org/10.1007/s11430-007-0105-x.CrossRefGoogle Scholar
  10. Fan, K., 2009: Seasonal forecast model for the number of tropical cyclones to make landfall in China. Atmos. Ocean. Sci. Lett., 2, 251–254, doi:  https://doi.org/10.1080/16742834.2009.11446811.CrossRefGoogle Scholar
  11. Fan, K., 2010: A prediction model for Atlantic named storm frequency using a year-by-year increment approach. Wea. Forecasting, 25, 1842–1851, doi:  https://doi.org/10.1175/2010WAF2222406.1.CrossRefGoogle Scholar
  12. Fan, K., and H. J. Wang, 2009: A new approach to forecasting typhoon frequency over the western North Pacific. Wea. Forecasting, 24, 974–986, doi:  https://doi.org/10.1175/2009WAF2222194.1.CrossRefGoogle Scholar
  13. Fan, K., H. J. Wang, and Y. J. Choi, 2008: A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Chinese Sci. Bull., 53, 602–609, doi:  https://doi.org/10.1007/s11434-008-0083-1.CrossRefGoogle Scholar
  14. Fan, K., Y. Liu, and H. P. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New approaches. Wea. Forecasting, 27, 1017–1030, doi:  https://doi.org/10.1175/WAF-D-11-00092.1.CrossRefGoogle Scholar
  15. Fan, K., B. Q. Tian, and H. J. Wang, 2016: New approaches for the skillful prediction of the winter North Atlantic Oscillation based on coupled dynamic climate models. Int. J. Climatol., 36, 82–94, doi:  https://doi.org/10.1002/joc.4330.CrossRefGoogle Scholar
  16. Fudeyasu, H., S. Iizuka, and T. Matsuura, 2006: Impact of ENSO on landfall characteristics of tropical cyclones over the western North Pacific during the summer monsoon season. Geophys. Res. Lett., 33, L21815, doi:  https://doi.org/10.1029/2006GL027449.CrossRefGoogle Scholar
  17. Ha, Y., and Z. Zhong, 2014: Features of tropical cyclone landfalls over East Asia corresponding to three types of Pacific warming decaying phase. Chinese Sci. Bull., 59, 4130–1136, doi:  https://doi.org/10.1007/s11434-014-0582-1.CrossRefGoogle Scholar
  18. Hendricks, E. A., M. S. Peng, and T. Li, 2013: Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction. Mon. Wea. Rev., 141, 4028–4048, doi:  https://doi.org/10.1175/MWR-D-12-00329.1.CrossRefGoogle Scholar
  19. Ho, C. H., J. H. Kim, H. S. Kim, et al., 2005: Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. J. Geophys. Res. Atmos., 110, D19104, doi:  https://doi.org/10.1029/2005jd005766.CrossRefGoogle Scholar
  20. Ho, C.-H., H.-S. Kim, and P.-S. Chu, 2009: Seasonal prediction of tropical cyclone frequency over the East China Sea through a Bayesian Poisson-regression method. Asia-Pacific J. Atmos. Sci., 45, 45–54.Google Scholar
  21. Hong, C.-C., Y.-K. Wu, and T. Li, 2016: Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Climate Dyn., 47, 2587–2600, doi:  https://doi.org/10.1007/s00382-016-2986-x.CrossRefGoogle Scholar
  22. Huang, R. H., and G. H. Chen, 2007: Research on interannual variations of tracks of tropical cyclones over Northwest Pacific and their physical mechanism. Acta Meteor. Sinica, 65, 683–694, doi:  https://doi.org/10.11676/qxxb2007.064. (in Chinese)Google Scholar
  23. Huang, W. R., and J. C. L. Chan, 2014: Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall. Climate Dyn., 22, 2227–2237, doi:  https://doi.org/10.1007/s00382-013-1747-3.CrossRefGoogle Scholar
  24. Huang, Y., and L. Jin, 2013: A prediction scheme with genetic neural network and Isomap algorithm for tropical cyclone intensity change over western North Pacific. Meteor. Atmos. Phys., 121, 143–152, doi:  https://doi.org/10.1007/s00703-013-0263-7.CrossRefGoogle Scholar
  25. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi:  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  26. Kim, H. M., and P. J. Webster, 2010: Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical-statistical model. Geophys. Res. Lett., 37, L21705, doi:  https://doi.org/10.1029/2010GL044792.Google Scholar
  27. Kim, J. H., C. H. Ho, H. S. Kim, et al., 2012: 2010 western North Pacific typhoon season: Seasonal overview and forecast using a track-pattern-based model. Wea. Forecasting, 27, 730–743, doi:  https://doi.org/10.1175/WAF-D-11-00109.1.CrossRefGoogle Scholar
  28. Lee, M. H., C. H. Ho, and J. H. Kim, 2010: Influence of tropical cyclone landfalls on spatiotemporal variations in typhoon season rainfall over South China. Adv. Atmos. Sci., 27, 443–454, doi:  https://doi.org/10.1007/s00376-009-9106-3.CrossRefGoogle Scholar
  29. Lei, X. T., M. Xu, and F. M. Ren, 2009: A review on the impacts of global warming on tropical cyclone activities. Acta Meteor. Sinica, 67, 679–688, doi:  https://doi.org/10.11676/qxxb2009.068. (in Chinese)Google Scholar
  30. Liu, K. S., and J. C. L. Chan, 2003: Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast. Mon. Wea. Rev., 131, 1650–1662, doi:  https://doi.org/10.1175//2554.1.CrossRefGoogle Scholar
  31. Liu, Y., K. Fan, and H. J. Wang, 2011: Statistical downscaling prediction of summer precipitation in southeastern China. Atmos. Ocean. Sci. Lett., 4, 173–180, doi:  https://doi.org/10.1080/16742834.2011.11446925.CrossRefGoogle Scholar
  32. Lok, C. C. F., and J. C. L. Chan, 2018: Changes of tropical cyclone landfalls in South China throughout the twenty-first century. Climate Dyn., 51, 2467–2483, doi:  https://doi.org/10.1007/s00382-017-4023-0.CrossRefGoogle Scholar
  33. Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26, 1589–1600, doi:  https://doi.org/10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.CrossRefGoogle Scholar
  34. Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 2417–2424, doi:  https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.CrossRefGoogle Scholar
  35. Saha, S., S. Moorthi, X. R. Wu, et al., 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185–2208, doi:  https://doi.org/10.1175/JCLI-D-12-00823.1.CrossRefGoogle Scholar
  36. Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J. Climate, 21, 2283–2296, doi:  https://doi.org/10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  37. Sun, S. Q., G. Liu, and Q. Y. Zhang, 2007: The influence of the circulation anomalies in the Southern Hemisphere on the tropical cyclone frequency in summer over the western Pacific and its mechanism. Chinese J. Atmos. Sci., 31, 1189–1200, doi:  https://doi.org/10.3878/j.issn.1006-9895.2007.06.14. (in Chinese)Google Scholar
  38. Tian, B. Q., and K. Fan, 2015: A skillful prediction model for winter NAO based on Atlantic sea surface temperature and Eurasian snow cover. Wea. Forecasting, 30, 197–205, doi:  https://doi.org/10.1175/WAF-D-14-00100.1.CrossRefGoogle Scholar
  39. Tian, B. Q., K. Fan, and H. Q. Yang, 2018: East Asian winter monsoon forecasting schemes based on the NCEP’s climate forecast system. Climate Dyn., 51, 2793–2805, doi:  https://doi.org/10.1007/s00382-017-4045-7.CrossRefGoogle Scholar
  40. Vecchi, G. A., M. Zhao, H. Wang, et al., 2011: Statistical-dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 1070–1082, doi:  https://doi.org/10.1175/2010MWR3499.1.CrossRefGoogle Scholar
  41. Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658, doi:  https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.CrossRefGoogle Scholar
  42. Wang, H., J. K. E. Schemm, A. Kumar, et al., 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 4481–4500, doi:  https://doi.org/10.1175/2009JCLI2753.1.CrossRefGoogle Scholar
  43. Wang, H. J., and K. Fan, 2007: Relationship between the Antarctic oscillation in the western North Pacific typhoon frequency. Chinese Sci. Bull., 52, 561–565, doi:  https://doi.org/10.1007/s11434-007-0040-4.CrossRefGoogle Scholar
  44. Wang, H. J., and K. Fan, 2009: A new scheme for improving the seasonal prediction of summer precipitation anomalies. Wea. Forecasting, 24, 548–554, doi:  https://doi.org/10.1175/2008WAF2222171.1.CrossRefGoogle Scholar
  45. Wu, G. X., and N. C. Lau, 1992: A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Wea. Rev., 120, 958–977, doi:  https://doi.org/10.1175/1520-0493(1992)120<0958:AGSOTR>2.0.CO;2.CrossRefGoogle Scholar
  46. Wu, M. C., W. L. Chang, and W. M. Leung, 2004: Impacts of El Niño-Southern Oscillation events on tropical cyclone land-falling activity in the western North Pacific. J. Climate, 17, 1419–1428, doi:  https://doi.org/10.1175/1520-0442(2004)017<1419:IOENOE>2.0.CO;2.CrossRefGoogle Scholar
  47. Yang, Y. H., M. Ying, and B. D. Chen, 2009: The climatic changes of landfall tropical cyclones in China over the past 58 years. Acta Meteor. Sinica, 67, 689–696, doi:  https://doi.org/10.11676/qxxb2009.069. (in Chinese)Google Scholar
  48. Ying, M., W. Zhang, H. Yu, et al., 2014: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Ocean. Technol., 31, 287–301, doi:  https://doi.org/10.1175/JTECH-D-12-00119.1.CrossRefGoogle Scholar
  49. Yonekura, E., and T. M. Hall, 2014: ENSO effect on East Asian tropical cyclone landfall via changes in tracks and genesis in a statistical model. J. Appl. Meteor. Climatol., 53, 406–420, doi:  https://doi.org/10.1175/JAMC-D-12-0240.1.CrossRefGoogle Scholar
  50. Zhang, W. J., Y. J. Zhang, D. Zheng, et al., 2015: Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific. J. Geophys. Res. Atmos., 120, 4072–4089, doi:  https://doi.org/10.1002/2014JD022334.CrossRefGoogle Scholar
  51. Zhou, B. T., and X. Cui, 2011: Sea surface temperature east of Australia: A predictor of tropical cyclone frequency over the western North Pacific? Chinese Sci. Bull., 56, 196–201, doi:  https://doi.org/10.1007/s11434-010-4157-5.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations