Journal of Meteorological Research

, Volume 33, Issue 2, pp 307–322 | Cite as

Assessment of the Capability of ENSEMBLES Hindcasts in Predicting Spring Climate in China

  • Yitong Lin
  • Haiming XuEmail author
  • Jing Ma
  • Haijun Li
Regular Articles


Using the hindcasts provided by the Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project for the period of 1980-2005, the forecast capability of spring climate in China is assessed mainly from the aspects of precipitation, 2-m air temperature, and atmospheric circulations. The ENSEMBELS can reproduce the climatology and dominant empirical orthogonal function (EOF) modes of precipitation and 2-m air temperature, with some differences arising from different initialization months. The multi-model ensemble (MME) forecast of interannual variability is of good performance in some regions such as eastern China with February initialization. The spatial patterns of the MME interannual and inter-member spreads for precipitation and 2-m air temperature are consistent with those of the observed interannual spread, indicating that internal dynamic processes have major impacts on the interannual anomaly of spring climate in China. We have identified two coupled modes between inter-member anomalies of the 850-hPa vorticity in spring and sea surface temperature (SST) both in spring and at a lead of 2 months, of which the first mode shows a significant impact on the spring climate in China, with an anomalous anticyclone located over Northwest Pacific and positive precipitation and southwesterly anomalies in eastern China. Our results also suggest that the SST at a lead of two months may be a predictor for the spring climate in eastern China. A better representation of the ocean-atmosphere interaction over the tropical Pacific, Northwest Pacific, and Indian Ocean can improve the forecast skill of the spring climate in eastern China.

Key words

ENSEMBLES seasonal forecast spring climate coupled atmosphere-ocean mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the ENSEMBLES project for providing the model outputs. We also acknowledge the organizations that provided the observations for this study: the NCEP Reanalysis Derived data, NOAA_ERSST_V4 data, and GPCP precipitation data, which are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (at The authors thank the anonymous reviewers for their constructive and thoughtful comments, which have helped improve this manuscript.


  1. Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147–1167, doi: 10.1175/1525-7541(2003)004<1147:TVGP-CP>2.0.CO;2.CrossRefGoogle Scholar
  2. Bai, X. X., C. Y. Li, and L. Li, 2012: Numerical simulation study of the Madden-Julian Oscillation influences on spring precipitation in China. Acta Meteor. Sinica, 70, 986–1003, doi: 10.11676/qxxb2012.083. (in Chinese)Google Scholar
  3. Chen, J. P., Z. P. Wen, R. G. Wu, et al., 2014: Interdecadal changes in the relationship between southern China winter- spring precipitation and ENSO. Climate Dyn., 43, 1327–1338, doi: 10.1007/s00382-013-1947-x.CrossRefGoogle Scholar
  4. Chen, L., and O. W. Frauenfeld, 2014: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos., 119, 5767–5786, doi: 10.1002/2013JD021190.CrossRefGoogle Scholar
  5. Chen, Q. Y., Y. Q. Yu, and Y. F. Guo, 1997: Simulation of East Asian summer monsoon with IAP CGCM. Adv. Atmos. Sci., 14, 461–472, doi: 10.1007/s00376-997-0064-3.CrossRefGoogle Scholar
  6. Chen, S. F., R. G. Wu, and Y. Liu, 2015: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Climate, 29, 1109–1125, doi: 10.1175/JCLI-D-15-0524.1.CrossRefGoogle Scholar
  7. Chowdary, J. S., S. P. Xie, J. J. Luo, et al., 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607–621, doi: 10.10 07/s00382-009-0686-5.CrossRefGoogle Scholar
  8. Deser, C., and M. S. Timlin, 1997: Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393–408, doi: 10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.CrossRefGoogle Scholar
  9. Ding, Y. H., Q. Q. Li, W. J. Li, et al., 2004: Advance in seasonal dynamical prediction operation in China. Acta Meteor. Sinica, 62, 598–612, doi: 10.11676/qxxb2004.059. (in Chinese)Google Scholar
  10. Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus A, 57, 234–252, doi: 10.1111/j.1600-0870.2005.00104.x.Google Scholar
  11. Doblas-Reyes, F. J., A. Weisheimer, T. N. Palmer, et al., 2010: Forecast Quality Assessment of the ENSEMBLES Seasonal-to-Decadal Stream 2 Hindcasts. ECMWF Technical Memorandum 621, ECMWF, Reading UK, 1-45, doi: 10.21957/10x9tmf12.Google Scholar
  12. Du, Y., S. P. Xie, G. Huang, et al., 2009: Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. J. Climate, 22, 2023–2038, doi: 10.1175/2008JCLI2590.1.CrossRefGoogle Scholar
  13. Fan, Y., K. Fan, and B. Q. Tian, 2016: Has the prediction of the South China Sea summer monsoon improved since the late 1970s? J. Meteor. Res., 30, 833–852, doi: 10.1007/s13351-016-6052-8.CrossRefGoogle Scholar
  14. Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over South China. J. Geophys. Res. Atmos., 116, D13102, doi: 10.1029/2010JD015160.CrossRefGoogle Scholar
  15. Feng, J. Q., L. J. Yu, and D. X. Hu, 2014: Influence of Indian Ocean subtropical dipole on spring rainfall over China. Int. J. Climatol., 34, 954–963, doi: 10.1002/joc.3732.CrossRefGoogle Scholar
  16. Feng, L., T. J. Zhou, B. Wu, et al., 2011: Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv. Atmos. Sci., 28, 464–476, doi: 10.1007/s00376-010-0016-1.CrossRefGoogle Scholar
  17. Huang, B. Y., V. F. Banzon, E. Freeman, et al., 2014: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930, doi: 10.1175/JCLI-D-14-00006.1.CrossRefGoogle Scholar
  18. Huang, D. Q., J. Zhu, Y. C. Zhang, et al., 2013: Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos., 118, 9035–9047, doi: 10.1002/jgrd.50695.CrossRefGoogle Scholar
  19. Huang, G., K. M. Hu, and S. P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 5294–5304, doi: 10.1175/2010JCLI3577.1.CrossRefGoogle Scholar
  20. Jia, X. J., J. Y. Lee, H. Lin, et al., 2014: Interdecadal change in the Northern Hemisphere seasonal climate prediction skill: Part I. The leading forced mode of atmospheric circulation. Climate Dyn., 43, 1595–1609, doi: 10.1007/s00382-013-1988-1.CrossRefGoogle Scholar
  21. Jiang, D. B., H. J. Wang, and X. M. Lang, 2005: Evaluation of East Asian climatology as simulated by seven coupled models. Adv. Atmos. Sci., 22, 479–495, doi: 10.1007/BF02918482.CrossRefGoogle Scholar
  22. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  23. Kosaka, Y., S. P. Xie, N. C. Lau, et al., 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 7574–7579, doi: 10.1073/pnas.1215582110.CrossRefGoogle Scholar
  24. Krishnamurti, T. N., C. M. Kishtawal, T. E. La Row, et al., 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 1548–1550, doi: 10.1126/science.285.5433.1548.CrossRefGoogle Scholar
  25. Kumar, V., and T. N. Krishnamurti, 2012: Improved seasonal precipitation forecasts for the Asian monsoon using 16 atmosphere-ocean coupled models. Part I: Climatology. J. Climate, 25, 39–64, doi: 10.1175/2011JCLI4125.1.CrossRefGoogle Scholar
  26. Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329–346, doi: 10.1007/s00382-011-1274-z.CrossRefGoogle Scholar
  27. Li, C. F., R. Y. Lu, and B. W. Dong, 2014: Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dyn., 43, 1829–1845, doi: 10.1007/s00382-013-2010-7.CrossRefGoogle Scholar
  28. Liu, W., B. Y. Huang, P. W. Thorne, et al., 2015: Extended reconstructed sea surface temperature version 4 (ERSST. v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931–951, doi: 10.1175/JCLI-D-14-00007.1.CrossRefGoogle Scholar
  29. Ma, J., S. P. Xie, and H. M. Xu, 2017a: Intermember variability of the summer Northwest Pacific subtropical anticyclone in the ensemble forecast. J. Climate, 30, 3927–3941, doi: 10.1175/JCLI-D-16-0638.1.CrossRefGoogle Scholar
  30. Ma, J., S. P. Xie, and H. M. Xu, 2017b: Contributions of the north pacific meridional mode to ensemble spread of ENSO prediction. J. Climate, 30, 9167–9181, doi: 10.1175/JCLI-D-17-0182.1.CrossRefGoogle Scholar
  31. Miao, C. Y., Q. Y. Duan, L. Yang, et al., 2012: On the applicability of temperature and precipitation data from CMIP3 for China. PLoS One, 7, e44659, doi: 10.1371/journal.pone.0044659.CrossRefGoogle Scholar
  32. Qiu, Y., W. J. Cai, X. G. Guo, et al., 2009: Dynamics of late spring rainfall reduction in recent decades over southeastern China. J. Climate, 22, 2240–2247, doi: 10.1175/2008JCLI2809.1.CrossRefGoogle Scholar
  33. Rajeevan, M., C. K. Unnikrishnan, and B. Preethi, 2012: Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Climate Dyn., 38, 2257–2274, doi: 10.1007/s00382-011-1061-x.CrossRefGoogle Scholar
  34. Si, D., Y. H. Ding, and Y. J. Liu, 2009: Evaluation of Meiyu prediction in the Yangtze-Huaihe region by coupled ocean-atmosphere general circulation model (BCC_CM1.0). Acta Meteor. Sinica, 67, 947–960, doi: 10.11676/qxxb2009.092. (in Chinese)Google Scholar
  35. Stockdale, T. N., O. Alves, G. Boer, et al., 2010: Understanding and predicting seasonal-to-interannual climate variability — The producer perspective. Proced. Environ. Sci., 1, 55–80, doi: 10.1016/j.proenv.2010.09.006.CrossRefGoogle Scholar
  36. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  37. van der Linden, P., and J. F. B. Mitchell, 2009: ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 160 pp.Google Scholar
  38. Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561–576, doi: 10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.CrossRefGoogle Scholar
  39. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian tele-connection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  40. Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 1195–1211, doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.CrossRefGoogle Scholar
  41. Wang, B., Q. H. Ding, X. H. Fu, et al., 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi: 10.1029/2005 GL022734.CrossRefGoogle Scholar
  42. Wang, B., J. Y. Lee, I. S. Kang, et al., 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/Cli-PAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93–117, doi: 10.1007/s00382-008-0460-0.CrossRefGoogle Scholar
  43. Weisheimer, A., F. J. Doblas-Reyes, T. N. Palmer, et al., 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi: 10.1029/2009GL040896.Google Scholar
  44. Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd Ed., Academic Press, New York, 467 pp.Google Scholar
  45. Wu, R. G., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 1285–1304, doi: 10.1175/JCLI4068.1.CrossRefGoogle Scholar
  46. Wu, X. F., and J. Y. Mao, 2016: Interdecadal modulation of EN-SO-related spring rainfall over South China by the Pacific decadal oscillation. Climate Dyn., 47, 3203–3220, doi: 10.1007/s00382-016-3021-y.CrossRefGoogle Scholar
  47. Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008JCLI2544.1.CrossRefGoogle Scholar
  48. Xu, C. H., Y. Luo, and Y. Xu, 2010: Assessment and projection for spatial-temporal distribution of precipitation in China based on global climate models. Adv. Climate Change Res., 6, 398–404, doi: 10.3969/j.issn.1673-1719.2010.06.002. (in Chinese)Google Scholar
  49. Xu, Y., and C. H. Xu, 2012: Preliminary assessment of simulations of climate changes over china by CMIP5 multi-models. Atmos. Oceanic Sci. Lett., 5, 489–494, doi: 10.1080/16742 834.2012.11447041.CrossRefGoogle Scholar
  50. You, Y. J., and X. J. Jia, 2018: Interannual variations and prediction of spring precipitation over China. J. Climate, 31, 655–670, doi: 10.1175/JCLI-D-17-0233.1.CrossRefGoogle Scholar
  51. Yu, R. C., W. Li, X. H. Zhang, et al., 2000: Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17, 503–518, doi: 10.1007/s00376-000-0014-9.CrossRefGoogle Scholar
  52. Zhang, R. H., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J. Meteor. Soc. Japan, 80, 213–227, doi: 10.2151/jmsj.80.213.CrossRefGoogle Scholar
  53. Zhou, T. J., and R. C. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858, doi: 10.1175/JCLI3952.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment ChangeNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations