Journal of Meteorological Research

, Volume 33, Issue 2, pp 251–263 | Cite as

Coupling the Common Land Model to ECHAM5 Atmospheric General Circulation Model

  • Yufei Xin
  • Yongjiu DaiEmail author
  • Jian Li
  • Xinyao Rong
  • Guo Zhang
Special Collection on CAMS-CSM


The ECHAM5 model is coupled with the widely used Common Land Model (CoLM). ECHAM5 is a state-of-the-art atmospheric general circulation model incorporated into the integrated weather and climate model of the Chinese Academy of Meteorological Sciences (CAMS-CSM). Land surface schemes in ECHAM5 are simple and do not provide an adequate representation of the vegetation canopy and snow/frozen soil processes. Two AMIP (Atmospheric Model Intercomparison Project)-type experiments using ECHAM5 and ECHAM5-CoLM are run over 30 yr and the results are compared with reanalysis and observational data. It is found that the pattern of land surface temperature simulated by ECHAM5-CoLM is significantly improved relative to ECHAM5. Specifically, the cold bias over Eurasia is removed and the root-mean-square error is reduced in most regions. The seasonal variation in the zonal mean land surface temperature and the in situ soil temperature at 20- and 80-cm depths are both better simulated by ECHAM5-CoLM. ECHAM5-CoLM produces a more reasonable spatial pattern in the soil moisture content, whereas ECHAM5 predicts much drier soils. The seasonal cycle of soil moisture content from ECHAM5-CoLM is a better match to the observational data in six specific regions. ECHAM5-CoLM reproduces the observed spatial patterns of both sensible and latent heat fluxes. The strong positive bias in precipitation over land is reduced in ECHAM5-CoLM, especially over the southern Tibetan Plateau and middle-lower reaches of the Yangtze River during the summer monsoon rainy season.

Key words

atmospheric general circulation models ECHAM5 Common Land Model land-atmosphere coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol., 4, 1147–1168, doi: 10.1175/1525-7541(2003)004<1147:TVGP-CP>2.0.CO;2.CrossRefGoogle Scholar
  2. Albergel, C., P. De Rosnay, G. Balsamo, et al., 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol, 13, 1442–1460, doi: 10.1175/JHM-D-11-0107.1.CrossRefGoogle Scholar
  3. Balsamo, G., S. Boussetta, E. Dutra, et al., 2011: Evolution of land-surface processes in the IFS. ECMWF Newslett., 127, 17–22, doi: 10.21957/xlj3i7bz.Google Scholar
  4. Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Climate, 11, 1307–1326, doi: 10.1175/1520-0442 (1998)011<1307:TLSCOT>2.0.CO;2.CrossRefGoogle Scholar
  5. Chen, F., K. Mitchell, J. Schaake, et al., 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos., 101, 7251–7268, doi: 10.1029/95JD02165.CrossRefGoogle Scholar
  6. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull Amer. Meteor. Soc., 84, 1013–1023, doi: 10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  7. Dai, Y. J., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281–2299, doi: 10.1175/1520-0442(2004)017<2281: ATMFCT>2.0. CO;2.CrossRefGoogle Scholar
  8. Dai, Y., S. G. Wei, Q. Y. Duan, et al., 2013: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol, 14, 869–887, doi: 10.1175/jhm-d-12-0149.1.CrossRefGoogle Scholar
  9. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387 STR National Center for Atmospheric Research, Boulder, CO, doi: 10.5065/D67W6959.Google Scholar
  10. Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Mod. Dev., 9, 1937–1958, doi: 10.5194/gmd-9-1937-2016.CrossRefGoogle Scholar
  11. Fan, Y., and H. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res. Atmos., 109, D10102, doi: 10.1029/2003JD004345.Google Scholar
  12. Griffies, S. M., 2010: Elements of MOM4p1. GFDL Ocean Group Technical Report No. 6, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, 444 pp.Google Scholar
  13. IPCC, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change, T. F. Stacker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  14. Jetten, V., A. de Roo, and D. Favis-Mortlock, 1999: Evaluation of field-scale and catchment-scale soil erosion models. CA TENA, 37, 521–541, doi: 10.1016/S0341-8162(99)00037-5.Google Scholar
  15. Jung, M., M. Reichstein, H. A. Margolis, et al., 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci., 116, G00J07, doi: 10.1029/2010JG001566.Google Scholar
  16. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc, 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  17. Kumar, S., P. A. Dirmeyer, V. Merwade, et al., 2013: Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. J. Geophys. Res. Atoms., 118, 6337–6353, doi: 10.1002/jgrd.50463.CrossRefGoogle Scholar
  18. Lee, X., M. L. Goulden, D. Y. Hollinger, et al., 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384–387, doi: 10.1038/naturel0588.CrossRefGoogle Scholar
  19. Li, H. Y., C. B. Fu, and W. D. Guo, 2017: An integrated evaluation of land surface energy fluxes over China in seven reanalysis/modeling products. J. Geophys. Res. Atmos., 122, 8543–8566, doi: 10.1002/2016JD026166.CrossRefGoogle Scholar
  20. Li, J. D., Q. Y. Duan, W. Gong, et al., 2013: Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci., 17, 3279–3293, doi: 10.5194/hess-l7-3279-2013.CrossRefGoogle Scholar
  21. Li, Y., N. De Noblet-Ducoudre, E. L. Davin, et al., 2016: The role of spatial scale and background climate in the latitudinal temperature response to deforestation. Earth Syst. Dynam., 7, 167–181, doi: 10.5194/esd-7-l67-2016.CrossRefGoogle Scholar
  22. Liang, X., D. P. Lettenmaier, E. F. Wood, et al., 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atoms., 99, 1415–1428, doi: 10.1029/94JD00483.Google Scholar
  23. Niu, G. Y., Z. L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atoms., 116, D12109,doi: 10.1029/2010JD015139.Google Scholar
  24. Oleson, K., D. M. Lawrence, G. B. Bonan, et al., 2010: Technical Description of Version 4.0 of the Community Land Model. NCAR Technical Note NCAR/TN-478 STR, National Center for Atmospheric Research, Boulder, Colorado, 257 pp, doi: 10.5065/D6FB50WZ..Google Scholar
  25. Perrin, C., C. Michel, and V. Andreassian, 2001: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments J. Hydrol., 242, 275–301, doi: 10.1016/ S0022-1694(00)00393-0.CrossRefGoogle Scholar
  26. Pitman, A. J., N. de Noblet-Ducoudre, F. T. Cruz, et al., 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett, 36, L14814, doi: 10.1029/2009GL039076.Google Scholar
  27. Roeckner, E., G. Bauml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM 5. Part I: Model Description. MPI-Report No. 349, MPI fur Meteorologie, Hamburg, 127 pp.Google Scholar
  28. Roeckner, E., R. Brokopf, M. Esch, et al., 2004: The Atmospheric General Circulation Model ECHAM5. Part II: Sensitivity of Simulated Climate to Horizontal and Vertical Resolution, MPI-Report No. 354, MPI fur Meteorologie, Hamburg, 55 pp.Google Scholar
  29. Rowntree, P. R., 1991: Atmospheric parameterization schemes for evaporation over land: Basic concepts and climate modeling aspects. Land Surface Evaporation: Measurement and Parameterization, T. J. Schmugge, and J.-C. André, Eds., Springer, New York, 5–29, doi: 10.1007/978-1-4612-3032-8_2.CrossRefGoogle Scholar
  30. Schlosser, C. A., A. G. Slater, A. Robock, et al., 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS Phase 2(d). Mon. Wea. Rev., 128, 301–321, doi: 10.1175/1520-0493(2000)128<0301:SOABGH>2.0.CO;2.CrossRefGoogle Scholar
  31. Slater, A. G., C. A. Schlosser, C. E. Desborough, et al., 2001: The representation of snow in land-surface schemes: Results from PILPS 2(d). J. Hydrometeorol, 2, 7–25, doi: 10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2.CrossRefGoogle Scholar
  32. Stall, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 2831–2841.CrossRefGoogle Scholar
  33. Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712–716, doi: 10.1073/pnas.lll6706108.CrossRefGoogle Scholar
  34. Wei, J. F., P. A. Dirmeyer, Z. C. Guo, et al., 2010: How much do different land models matter for climate simulation? Part I: Climatology and variability. J. Climate, 23, 3120–3134, doi: 10.1175/2010JCLI3177.1.CrossRefGoogle Scholar
  35. Wei, J. F., P. A. Dirmeyer, Z. L. Yang, et al., 2017: Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability. Theor. Appl. Climatol, 134, 793–800, doi: 10.1007/s00704-017-2310-7.CrossRefGoogle Scholar
  36. Xue, Y., P. J. Sellers, J. L. Kinter, et al., 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345–364, doi: 10.1175/1520-0442(1991)004<0345:ASBMFG >2.0.CO;2.CrossRefGoogle Scholar
  37. Yu, R. C., 1994: A two-step shape preserving advection scheme. Adv. Atmos. Sci., 11, 479–490, doi: 10.1007/BF02658169.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Yufei Xin
    • 1
  • Yongjiu Dai
    • 2
    Email author
  • Jian Li
    • 1
  • Xinyao Rong
    • 1
  • Guo Zhang
    • 1
  1. 1.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  2. 2.School of Atmospheric SciencesSun Yat-Sen UniversityGuangdongChina

Personalised recommendations