Advertisement

Journal of Meteorological Research

, Volume 33, Issue 1, pp 115–125 | Cite as

Sea-Salt Aerosol Effects on the Simulated Microphysics and Precipitation in a Tropical Cyclone

  • Baolin Jiang
  • Wenshi LinEmail author
  • Fangzhou Li
  • Junwen Chen
Regular Articles
  • 5 Downloads

Abstract

We investigate the effects of sea-salt aerosol (SSA) activated as cloud condensation nuclei on the microphysical processes, precipitation, and thermodynamics of a tropical cyclone (TC). The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used together with a parameterization of SSA production. Three simulations, with different levels of SSA emission (CTL, LOW, HIGH), were conducted. The simulation results show that SSA contributes to the processes of autoconversion of cloud water and accretion of cloud water by rain, thereby promoting rain formation. The latent heat release increases with SSA emission, slightly increasing horizontal wind speeds of the TC. The presence of SSA also regulates the thermodynamic structure and precipitation of the TC. In the HIGH simulation, higher latent heat release gives rise to stronger updrafts in the TC eyewall area, leading to enhanced precipitation. In the LOW simulation, due to decreased latent heat release, the temperature in the TC eye is lower, enhancing the downdrafts in the region; and because of conservation of mass, updrafts in the eyewall also strengthen slightly; as a result, precipitation in the LOW experiment is a little higher than that in the CTL experiment. Overall, the relationship between the precipitation rate and SSA emission is nonlinear.

Key words

sea-salt aerosol microphysics tropical cyclone WRF-Chem cloud condensation nuclei 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to the NCAR Mesoscale and Microscale Meteorology Division for making the WRF-Chem model available at https://doi.org/www.mmm.ucar.edu/wrf/users. We thank NCAR’s Research Data Archive for making the NCEP Final Operational Model Global Tropospheric Analysis (NCEP-FNL; https://doi.org/rda.ucar.edu/datasets/ds083.2) dataset available.

References

  1. Carrio, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11: 2557–2567, doi: 10.5194/acp-11-2557-2011.CrossRefGoogle Scholar
  2. Chen, F., and J., Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129: 569–585, doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.Google Scholar
  3. Chin, M., R. B. Rood, S. J. Lin, et al., 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res. Atmos., 105: 671–687, doi: 10.1029/2000JD900384.Google Scholar
  4. Chin, M., P. Ginoux, S. Kinne, et al., 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59: 461–483, doi: 10.1175/1520-0469(2002)059<0461: TAOTFT>2.0.CO;2.CrossRefGoogle Scholar
  5. Cotton, W. R., H. N. Zhang, G. M. McFarquhar, et al., 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Mod., 39: 70–73.Google Scholar
  6. Ek, M. B., K. B. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108: 8851, doi: 10.1029/2002JD003296.CrossRefGoogle Scholar
  7. Evan, A. T., J. P. Kossin, C. E. Chung, et al., 2011: Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature, 479: 94–97, doi: 10.1038/nature10552.CrossRefGoogle Scholar
  8. Fan, J. W., T. L. Yuan, J. M. Comstock, et al., 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos., 114, D22206, doi: 10.1029/2009JD012352.CrossRefGoogle Scholar
  9. Fan, J. W., L. R. Leung, Z. Q. Li, et al., 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res. Atmos., 117, D00K36, doi: 10.1029/2011JD016537.Google Scholar
  10. Gerber, H. E., 1985: Relative Humidity Parameterization of the Navy Aerosol Model (NAM). Report No. NRL Report 8956, Naval Research Laboratory, Washington, 17 pp.Google Scholar
  11. Gong, S. L., L. A.Barrie, and J. P.Blanchet, 1997a: Modeling seasalt aerosols in the atmosphere: 1. Model development. J. Geophys. Res. Atmos., 102: 3805–3818, doi: 10.1029/96JD 02953.Google Scholar
  12. Gong, S. L., L. A.Barrie, J. M.Prospero, et al., 1997b: Modeling sea-salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes. J. Geophys. Res. Atmos., 102: 3819–3830, doi: 10.1029/96JD03401.Google Scholar
  13. Grell, G. A., S. E. Peckham, R. Schmitz, et al., 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39: 6957–6975, doi: 10.1016/j.atmosenv.2005.04. 027.CrossRefGoogle Scholar
  14. Hazra, A., P. Mukhopadhyay, S. Taraphdar, et al., 2013: Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation. J. Geophys. Res. Atmos., 118: 7157–7168, doi: 10.1002/jgrd.50546.CrossRefGoogle Scholar
  15. Herbener, S. R., S. C. van den Heever, G. G. Carrió, et al., 2014: Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci., 71: 2040–2055, doi: 10.1175/JAS-D-13-0202.1.CrossRefGoogle Scholar
  16. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134: 2318–2341, doi: 10.1175/MWR 3199.1.CrossRefGoogle Scholar
  17. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol., 8: 38–55, doi: 10.1175/JHM 560.1.CrossRefGoogle Scholar
  18. Iacono, M. J., E. J. Mlawer, S. A. Clough, et al., 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res. Atmos., 105: 14873–14890, doi: 10.1029/2000JD900091.CrossRefGoogle Scholar
  19. Jiang, B. L., B. Huang, W. S. Lin, et al., 2016: Investigation of the effects of anthropogenic pollution on typhoon precipitation and microphysical processes using WRF-Chem. J. Atmos. Sci., 73: 1593–1610, doi: 10.1175/JAS-D-15-0202.1.CrossRefGoogle Scholar
  20. Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39: 448–460, doi:1 0.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2.CrossRefGoogle Scholar
  21. Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131: 2639–2663, doi: 10. 1256/qj.04.62.CrossRefGoogle Scholar
  22. Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008a: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65: 1721–1748, doi: 10.1175/2007JAS2515.1.Google Scholar
  23. Khain, A. P., N. Cohen, B. Lynn, et al., 2008b: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65: 3652–3677, doi: 10.1175/2008JAS2678.1.Google Scholar
  24. Li, G. H., Y. Wang, and R. Y. Zhang, 2008: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol–cloud interaction. J. Geophys. Res. Atmos., 113, D15211, doi: 10.1029/2007JD009361.CrossRefGoogle Scholar
  25. Li, W. B., 2004: Modelling air–sea fluxes during a western Pacific typhoon: Role of sea spray. Adv. Atmos. Sci., 21: 269–276, doi: 10.1007/BF02915713.CrossRefGoogle Scholar
  26. Lin, W. S., S. S. Xu, and C.-H. Sui, 2011: A numerical simulation of the effect of the number concentration of cloud droplets on Typhoon Chanchu. Meteor. Atmos. Phys., 113: 99–108, doi: 10.1007/s00703-011-0152-x.CrossRefGoogle Scholar
  27. Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22: 1065–1092, doi: 10.1175/1520-0450(1983)022 <1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
  28. Liu, Y. G., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61: 1539–1548, doi: 10.1175/1520-0469(2004)061<1539:POTAPI>2.0. CO;2.Google Scholar
  29. Miller, M. J., A. C. M. Beljaars, and T. N. Palmer, 1992: The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J. Climate, 5: 418–434, doi: 10.1175/1520-0442(1992)005<0418:TSOTEM>2.0.CO;2.CrossRefGoogle Scholar
  30. Mlawer, E. J., S. J. Taubman, P.D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102: 16663–16682, doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  31. Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps, E. C. Monahan, and G. M. Niocaill, Eds., Springer, Dordrecht, 167–174, doi: 10.1007/978-94-009-4668-2_16.CrossRefGoogle Scholar
  32. Mueller, J. A., and F. Veron, 2014: Impact of sea spray on air–sea fluxes. Part II: Feedback effects. J. Phys. Oceanogr., 44: 2835–2853, doi: 10.1175/JPO-D-13-0246.1.Google Scholar
  33. Pan, B. W., Y. Wang, J. X. Hu, et al., 2018: Impacts of Saharan dust on Atlantic regional climate and implications for tropical cyclones. J. Climate, 31: 7621–7644, doi: 10.1175/JCLI-D-16-0776.1.CrossRefGoogle Scholar
  34. Rosenfeld, D., and W. L. Woodley, 2003: R. Adler, Eds., Meteor. Monogr., 51: 59–80, American Meteorological Society.CrossRefGoogle Scholar
  35. Rosenfeld, D., R. Lahav, A. Khain, et al., 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297: 1667–1670, doi: 10.1126/science.1073 869.CrossRefGoogle Scholar
  36. Rosenfeld, D., A. Khain, B. Lynn, et al., 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys., 7: 3411–3424, doi: 10.5194/acp-7-3411-2007.CrossRefGoogle Scholar
  37. Rosenfeld, D., U. Lohmann, G. B. Raga, et al., 2008: Flood or drought: How do aerosols affect precipitation? Science, 321: 1309–1313, doi: 10.1126/science.1160606.CrossRefGoogle Scholar
  38. Rosenfeld, D., M. Clavner, and R. Nirel, 2011: Pollution and dust aerosols modulating tropical cyclones intensities. Atoms. Res., 102: 66–76, doi: 10.1016/j.atmosres.2011.06.006.CrossRefGoogle Scholar
  39. Rosenfeld, D., W. L. Woodley, A. Khain, et al., 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93: 987–1001, doi: 10.1175/BAMSD-11-00147.1.CrossRefGoogle Scholar
  40. Wang, Y., A. Khalizov, M. Levy, et al., 2013: New directions: Light absorbing aerosols and their atmospheric impacts. Atmos. Environ., 81: 713–715, doi: 10.1016/j.atmosenv.2013.09.034.CrossRefGoogle Scholar
  41. Wang, Y., K. H. Lee, Y. Lin, et al., 2014: Distinct effects of anthropogenic aerosols on tropical cyclones. Nat. Clim. Change, 4: 368–373, doi: 10.1038/nclimate2144.CrossRefGoogle Scholar
  42. Xu, S. S., W. S. Lin, and C.-H. Sui, 2013: The separation of convective and stratiform precipitation regions of simulated Typhoon Chanchu and its sensitivity to the number concentration of cloud droplets. Atmos. Res., 122: 229–236, doi: 10.1016/j.atmosres.2012.10.027.CrossRefGoogle Scholar
  43. Zhang, H. N., G. M. McFarquhar, S. M. Saleeby, et al., 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, doi: 10.1029/2007GL029876.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Baolin Jiang
    • 1
  • Wenshi Lin
    • 1
    Email author
  • Fangzhou Li
    • 1
  • Junwen Chen
    • 1
  1. 1.School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster StudiesSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations