Journal of Meteorological Research

, Volume 33, Issue 1, pp 89–103 | Cite as

Remote Sensing of Tropical Cyclone Thermal Structure from Satellite Microwave Sounding Instruments: Impacts of Background Profiles on Retrievals

  • Hao Hu
  • Fuzhong WengEmail author
  • Yang Han
  • Yihong Duan
Regular Articles


A variational retrieval system often requires background atmospheric profiles and surface parameters in its minimization process. This study investigates the impacts of specific background profiles on retrievals of tropical cyclone (TC) thermal structure. In our Microwave Retrieval Testbed (MRT), the K-means clustering algorithm is utilized to generate a set of mean temperature and water vapor profiles according to stratiform and convective precipitation in hurricane conditions. The Advanced Technology Microwave Sounder (ATMS) observations are then used to select the profiles according to cloud type. It is shown that the cloud-based background profiles result in better hurricane thermal structures retrieved from ATMS observations. Compared to the Global Positioning System (GPS) dropsonde observations, the temperature and specific humidity errors in the TC inner region are less than 3 K and 2.5 g kg–1, respectively, which are significantly smaller than the retrievals without using the cloud-based profiles. Further experiments show that all the ATMS observations could retrieve well both temperature and humidity structures, especially within the inner core region. Thus, both temperature and humidity profiles derived from microwave sounding instruments in hurricane conditions can be reliably used for evaluation of the storm intensity with a high fidelity.

Key words

Advanced Technology Microwave Sounder (ATMS) Microwave Retrieval Testbed (MRT) hurricane thermal structure cloud-based background profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennartz, R., A. Thoss, A. Dybbroe, et al., 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl., 9: 177–189, doi: 10.1017/S1350482702002037.CrossRefGoogle Scholar
  2. Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos., 118: 12970–12980, doi: 10.1002/2013JD020325.CrossRefGoogle Scholar
  3. Boukabara, S.-A., K. Garrett, W. C. Chen, et al., 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49: 3249–3272, doi: 10.1109/TGRS.2011.2158438.CrossRefGoogle Scholar
  4. Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70: 146–162, doi: 10.1175/jas-d-12-062.1.Google Scholar
  5. Chen, H., D.-L. Zhang, J. Carton, et al., 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26: 885–901, doi: 10.1175/waf-d-11-00001.1.Google Scholar
  6. Geer, A. J., P. Bauer, and P. Lopez, 2008: Lessons learnt from the operational 1D + 4D-Var assimilation of rain-and cloud-affected SSM/I observations at ECMWF. Quart. J. Roy. Meteor. Soc., 134: 1513–1525, doi: 10.1002/qj.304.CrossRefGoogle Scholar
  7. Grody, N., J. Zhao, R. Ferraro, et al., 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 Advanced Microwave Sounding Unit. J. Geophys. Res. Atmos., 106: 2943–2953, doi: 10.1029/2000JD900616.CrossRefGoogle Scholar
  8. Han, Y., and F. Z. Weng, 2018: Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of optimal channel selection on retrievals. J. Meteor. Res., 32: 804–818, doi: 10.1007/s13351-018-8005-x.CrossRefGoogle Scholar
  9. Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1: 1964. Mon. Wea. Rev., 96: 617–636, doi: 10.1175/1520-0493(1968) 096<0617:hh>;2.Google Scholar
  10. Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104: 418–442, doi: 10.1175/1520-0493(1976)104<0418:tsoasi>2.0. co;2.CrossRefGoogle Scholar
  11. Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier/Academic Press, Oxford, 432 pp.Google Scholar
  12. JPSS ATMS SDR Science Team, 2013: Joint Polar Satellite System (JPSS) Advanced Technology Microwave Sounder (ATMS) SDR Calibration Algorithm Theoretical Basis Document (ATBD). E/RA-00001, Center for Satellite Applications and Research, Maryland, 41 pp. Available at Accessed on 28 December 2018.Google Scholar
  13. Knaff, J. A., R. M. Zehr, M. D. Goldberg, et al., 2000: An example of temperature structure differences in two cyclone systems derived from the Advanced Microwave Sounder Unit. Wea. Forecasting, 15: 476–483, doi: 10.1175/1520-0434(2000)015<0476:AEOTSD>2.0.CO;2.CrossRefGoogle Scholar
  14. Knaff, J. A., S. A. Seseske, M. DeMaria, et al., 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132: 2503–2510, doi: 10.1175/1520-0493(2004)132<2503:OTIOVW> 2.0.CO;2.CrossRefGoogle Scholar
  15. LaSeur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91: 694–709, doi: 10.1175/1520-0493(1963)091<0694:aaohcb>;2.CrossRefGoogle Scholar
  16. Lin, L., and F. Z. Weng, 2018: Estimation of hurricane maximum wind speed using temperature anomaly derived from Advanced Technology Microwave Sounder. IEEE Geosci. Remote Sens. Lett., 15: 639–643, doi: 10.1109/LGRS.2018. 2807763.CrossRefGoogle Scholar
  17. Liu, Q. H., and F. Z. Weng, 2005: One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from Advanced Microwave Sounding Unit (AMSU). IEEE Trans. Geosci. Remote Sens., 43: 1087–1095, doi: 10.1109/TGRS.2004.843211.CrossRefGoogle Scholar
  18. Lloyd, S., 1982: Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28: 129–137, doi: 10.1109/TIT.1982.1056489.CrossRefGoogle Scholar
  19. Matricardi, M., F. Chevallier, G. Kelly, et al., 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130: 153–173, doi: 10.1256/qj.02.181.CrossRefGoogle Scholar
  20. Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125: 1407–1425, doi: 10.1002/qj.1999.49712555615.CrossRefGoogle Scholar
  21. Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69: 1657–1680, doi: 10.1175/jas-d-11-010.1.CrossRefGoogle Scholar
  22. Stern, D. P., and F. Q. Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73: 3305–3328, doi: 10.1175/jas-d-15-0328.1.CrossRefGoogle Scholar
  23. Tian, X. X., and X. L. Zou, 2016: ATMS-and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J. Geophys. Res. Atmos., 121: 12630–12646, doi: 10.1002/2016JD025042.CrossRefGoogle Scholar
  24. Wang, R., and Y. F. Fu, 2017: Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia. J. Meteor. Res., 31: 890–905, doi: 10.1007/s13351-017-7038-x.CrossRefGoogle Scholar
  25. Weng, F. Z., X. L. Zou, N. H. Sun, et al., 2013: Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. Atmos., 118: 11,187–11,200, doi: 10.1002/jgrd.50840.CrossRefGoogle Scholar
  26. Zhu, T., and F. Z. Weng, 2013: Hurricane Sandy warm-core structure observed from Advanced Technology Microwave Sounder. Geophys. Res. Lett., 40: 3325–3330, doi: 10.1002/grl.50626.CrossRefGoogle Scholar
  27. Zhu, T., D.-L. Zhang, and F. Z. Weng, 2002: Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon. Wea. Rev., 130: 2416–2432, doi: 10.1175/1520-0493(2002)130<2416:iotams>;2.CrossRefGoogle Scholar
  28. Zou, X., F. Weng, B. Zhang, et al., 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118: 11,558–11,576, doi: 10.1002/2013JD020405.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanjing University of Information Science & TechnologyNanjingChina
  2. 2.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina

Personalised recommendations