Journal of Meteorological Research

, Volume 33, Issue 1, pp 66–79 | Cite as

Boreal Summer Intraseasonal Oscillation in the Asian–Pacific Monsoon Region Simulated in CAMS-CSM

  • Yanjun QiEmail author
  • Renhe Zhang
  • Xinyao Rong
  • Jian Li
  • Lun Li
Special Collection on CAMS-CSM


The boreal summer intraseasonal oscillation (BSISO) is simulated by the Climate System Model (CSM) developed at the Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration. Firstly, the results indicate that this new model is able to reasonably simulate the annual cycle and seasonal mean of the precipitation, as well as the vertical shear of large-scale zonal wind in the tropics. The model also reproduces the eastward and northward propagating oscillation signals similar to those found in observations. The simulation of BSISO is generally in agreement with the observations in terms of variance center, periodicity, and propagation, with the exception that the magnitude of BSISO anomalous convections are underestimated during both its eastward propagation along the equator and its northward propagation over the Asian–Pacific summer monsoon region. Our preliminary evaluation of the simulated BSISO by CAMS-CSM suggests that this new model has the capability, to a certain extent, to capture the BSISO features, including its propagation zonally along the equator and meridionally over the Asian monsoon region.

Key words

CAMS-CSM boreal summer intraseasonal oscillation (BSISO) Asian–Pacific summer monsoon region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajayamohan, R. S., and B. N. Goswami, 2007: Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J. Atmos. Sci., 64: 460–478, doi: 10.1175/JAS3844.1.CrossRefGoogle Scholar
  2. Benedict, J. J., E. D. Maloney, A. H. Sobel, et al., 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71: 3327–3349, doi: 10.1175/JAS-D-13-0240.1.CrossRefGoogle Scholar
  3. Cao, J., B. Wang, B. Xiang, et al., 2015: Major modes of shortterm climate variability in the newly developed NUIST Earth System Model (NESM). Adv. Atmos. Sci., 32: 585–600, doi: 10.1007/s00376-014-4200-6.CrossRefGoogle Scholar
  4. DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26: 1973–1992, doi: 10.1175/JCLI-D-12-00191.1.CrossRefGoogle Scholar
  5. Flatau, M., P. J. Flatau, P. Phoebus, et al., 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54: 2373–2386, doi: 10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.CrossRefGoogle Scholar
  6. Fu, X. H., and B. Wang, 2001: A coupled modeling study of the seasonal cycle of the Pacific cold tongue. Part I: Simulation and sensitivity experiments. J. Climate, 14: 765–779, doi: 10.1175/1520-0442(2001)014<0765:ACMSOT>2.0.CO;2.Google Scholar
  7. Fu, X. H., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17: 1263–1271, doi: 10.1175/1520-0442(2004)017<1263:DOBSIO> 2.0.CO;2.CrossRefGoogle Scholar
  8. Griffies, S. M., M. J. Harrison, P. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5: 339 pp.Google Scholar
  9. Gualdi, S., and A. Navarra, 1998: A study of the seasonal variability of the tropical intraseasonal oscillation. Global Atmos. Ocean Syst., 6: 337–372.Google Scholar
  10. Gualdi, S., A. Navarra, and H. von Storch, 1997: Tropical intraseasonal oscillation appearing in operational analyses and in a family of general circulation models. J. Atmos Sci., 54: 1185–1202, doi: 10.1175/1520-0469(1997)054<1185:TIOA IO>2.0.CO;2.CrossRefGoogle Scholar
  11. Gualdi, S., A. Navarra, and M. Fischer, 1999: The tropical intraseasonal oscillation in a coupled ocean–atmosphere general circulation model. Geophys. Res. Lett., 26: 2973–2976, doi: 10.1029/1999GL010414.CrossRefGoogle Scholar
  12. Hayashi, Y., 1982: Space–time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60: 156–171, doi: 10.2151/jmsj1965.60.1_156.CrossRefGoogle Scholar
  13. Hendon, H. H., 2000: Impact of air–sea coupling on the Madden-Julian Oscillation in a general circulation model. J. Atmos. Sci., 57: 3939–3952, doi: 10.1175/1520-0469(2001)058<3939: IOASCO>2.0.CO;2.CrossRefGoogle Scholar
  14. Hendon, H. H, C. D. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian Oscillation during austral summer. J. Climate, 12: 2538–2550, doi: 10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.CrossRefGoogle Scholar
  15. Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47: 823–839, doi: 10.1175/1520-0469(1990)047<08 23:TIOATR>2.0.CO;2.CrossRefGoogle Scholar
  16. Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25: 4914–4931, doi: 10.1175/JCLI-D-11-00310.1.CrossRefGoogle Scholar
  17. Hsu, P.-C., and Y. Yang, 2016: Contribution of atmospheric internal processes to the interannual variability of the South Asian summer monsoon. Int. J. Climatol., 36: 2917–2930, doi: 10.1002/joc.4528.CrossRefGoogle Scholar
  18. Hsu, P.-C., Z. Fu, and T. Xiao, 2018: Energetic processes regulating the strength of MJO circulation over the Maritime continent during two types of El Niño. Atmos. Ocean. Sci. Lett., 11: 112–119, doi: 10.1080/16742834.2018.1399049.CrossRefGoogle Scholar
  19. Inness, P. M., J. M. Slingo, E. Guilyardi, et al., 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16: 365–382, doi: 10.1175/1520-0442(2003)016<0365:SOTMJO> 2.0.CO;2.Google Scholar
  20. Ji, D., L. Wang, J. Feng, et al., 2014: Description and basic evaluation of BNU-ESM version 1. Geosci. Model Dev. Discuss., 7: 1601–1647, doi: 10.5194/gmdd-7-1601-2014.CrossRefGoogle Scholar
  21. Jia, X. L., C. Y. Li, N. F. Zhou, et al., 2010: The MJO in an AGCM with three different cumulus parameterization schemes. Dyn. Atmos. Oceans, 49: 141–163, doi: 10.1016/j. dynatmoce.2009.02.003.CrossRefGoogle Scholar
  22. Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17: 1022–1039, doi: 10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.CrossRefGoogle Scholar
  23. Jiang, X., D. E. Waliser, P. K. Xavier, et al., 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120: 4718–4748, doi: 10.1002/2014JD 022375.CrossRefGoogle Scholar
  24. Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14: 2923–2942, doi: 10.1175/1520-0442(2001) 014<2923:EWAASI>2.0.CO;2.CrossRefGoogle Scholar
  25. Kemball-Cook, S., B. Wang, and X. Fu, 2002: Simulation of the intraseasonal oscillation in the ECHAM-4 Model: The impact of coupling with an ocean model. J. Atmos. Sci., 59: 1433–1453, doi: 10.1175/1520-0469(2002)059<1433:SOTI OI>2.0.CO;2.CrossRefGoogle Scholar
  26. Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114: 1354–1367, doi:1 0.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.CrossRefGoogle Scholar
  27. Lau, W. K. M., and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Heidelberg, Germany, 474 pp.Google Scholar
  28. Lee, J.-Y., B. Wang, M. C. Wheeler, et al., 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40: 493–509, doi: 10.1007/s00382-012-1544-4.CrossRefGoogle Scholar
  29. Li, C. Y., J. Ling, J. Song, et al., 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28: 671–692, doi: 10.1007/s13351-014-4015-5.CrossRefGoogle Scholar
  30. Li, J., H. M. Chen, X. Y. Rong, et al., 2018: How well can a climate model simulate an extreme precipitation event: A case study using the Transpose-AMIP experiment. J. Climate, 31: 6543–6556, doi: 10.1175/JCLI-D-17-0801.1.CrossRefGoogle Scholar
  31. Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28: 1–33, doi: 10. 1007/s13351-014-3087-6.Google Scholar
  32. Li, W., Y. J. Zhu, X. Q. Zhou, et al., 2018: Evaluating the MJO prediction skill from different configurations of NCEP GEFS extended forecast. Climate Dyn. doi: 10.1007/s00382-018-4423-9.Google Scholar
  33. Lin, A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21: 6304–6320, doi: 10.1175/2008JCLI2331.1.CrossRefGoogle Scholar
  34. Lin, A. L., T. Li, X. H. Fu, et al., 2011: Effects of air–sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean. Climate Dyn., 37: 2303–2322, doi: 10.1007/s00382-010-0943-7.CrossRefGoogle Scholar
  35. Ling, J., C. D. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70: 2696–2712, doi: 10.1175/JAS-D-13-029.1.CrossRefGoogle Scholar
  36. Liu, F., and B. Wang, 2013: An air–sea coupled skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 70: 3147–3156, doi: 10.1175/JAS-D-12-0348.1.CrossRefGoogle Scholar
  37. Liu, F., and B. Wang, 2017: Effects of moisture feedback in a frictional coupled Kelvin–Rossby wave model and implication in the Madden–Julian oscillation dynamics. Climate Dyn., 48: 513–522, doi: 10.1007/s00382-016-3090-y.CrossRefGoogle Scholar
  38. Liu, F., B. Wang, and I.-S. Kang, 2015: Roles of barotropic convective momentum transport in the intraseasonal oscillation. J. Climate, 28: 4908–4920, doi: 10.1175/JCLI-D-14-00575.1.CrossRefGoogle Scholar
  39. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28: 702–708, doi: 10.1175/1520-0469(1971)028<0702: DOADOI>2.0.CO;2.CrossRefGoogle Scholar
  40. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29: 1109–1123, doi: 10.1175/1520-0469(1972)029<11 09:DOGSCC>2.0.CO;2.CrossRefGoogle Scholar
  41. Neena, J. M., D. Waliser, and X. Jiang, 2017: Model performance metrics and process diagnostics for boreal summer intraseasonal variability. Climate Dyn., 48: 1661–1683, doi: 10.1007/s00382-016-3166-8.CrossRefGoogle Scholar
  42. Nordeng, T. E., 1994: Extended Versions of the Convective Parameterization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. Technical Memorandum 206, ECMWF, Reading, UK. 41 pp.Google Scholar
  43. Qi, Y. J., R. H. Zhang, T. Li, et al., 2008: Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys. Res. Lett., 35, L17704, doi: 10.1029/2008GL034517.CrossRefGoogle Scholar
  44. Qi, Y. J., R. H. Zhang, P. Zhao, et al., 2013: Comparison of the structure and evolution of intraseasonal oscillations before and after onset of the Asian summer monsoon. Acta Meteor. Sinica, 27: 684–700, doi: 10.1007/s13351-013-0511-2.CrossRefGoogle Scholar
  45. Ren, H.-L., J. Wu, C.-B. Zhao, et al., 2016: MJO ensemble prediction in BCC-CSM1.1(m) using different initialization schemes. Atmos. Ocean. Sci. Lett., 9: 60–65, doi: 10.1080/16 742834.2015.1116217.CrossRefGoogle Scholar
  46. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM 5. Part I: Model Description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 127 pp.Google Scholar
  47. Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32: 839–861, doi: 10.1007/s13351-018-8058-x.CrossRefGoogle Scholar
  48. Sabeerali, C. T., A. Ramu Dandi, A. Dhakate, et al., 2013: Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J. Geophys. Res. Atmos., 118: 4401–4420, doi: 10.1002/jgrd.50403.CrossRefGoogle Scholar
  49. Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51: 2207–2224, doi: 10.1175/1520-0469(1994)051<2207:IBOC TA>2.0.CO;2.CrossRefGoogle Scholar
  50. Slingo, J. M., K. R. Sperber, J. S. Boyle, et al., 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12: 325–357, doi: 10.1007/BF00231106.CrossRefGoogle Scholar
  51. Sperber, K. R., and H. Annamalai, 2008: Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution on use of metrics. Climate Dyn., 31: 345–372, doi: 10.1007/s00382-008-0367-9.CrossRefGoogle Scholar
  52. Sperber, K. R., S. Gualdi, S. Legutke, et al., 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25: 117–140, doi: 10.1007/s00382-005-0026-3.CrossRefGoogle Scholar
  53. Teng, H. Y., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian–Pacific region. J. Climate, 16: 3572–3584, doi: 10.1175/1520-0442(2003)016<3572:IVOTBS>2.0.CO;2.CrossRefGoogle Scholar
  54. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117: 1779–1800, doi: 10.1175/1520-0493(1989)117<1779:AC MFSF>2.0.CO;2.CrossRefGoogle Scholar
  55. Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer, Berlin, 203–257.CrossRefGoogle Scholar
  56. Waliser, D. E., K. M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56: 333–358, doi: 10.1175/1520-0469(1999)056<0333:TIOCSS> 2.0.CO;2.CrossRefGoogle Scholar
  57. Waliser, D. E., K. M. Lau, W. Stern, et al., 2003a: Potential predictability of the Madden–Julian Oscillation. Bull. Amer. Meteor. Soc., 84: 33–50, doi: 10.1175/BAMS-84-1-33.CrossRefGoogle Scholar
  58. Waliser, D. E., K. Jin, I.-S. Kang, et al., 2003b: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21: 423–446, doi: 10.1007/s00382-003-0337-1.CrossRefGoogle Scholar
  59. Wang, B., 2005: Theory. Chapter 10 in Intraseasonal variability in the Atmosphere–Ocean Climate System, K. M. Lau and D. E. Waliser, eds, Springer and Praxis, Chichester, UK, 307–351.Google Scholar
  60. Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44: 43–61, doi: 10.1007/BF01026810.CrossRefGoogle Scholar
  61. Wang, B., and X. S. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53: 449–467, doi: 10.1175/1520-0469(1996)053<0 449:LFEWIV>2.0.CO;2.Google Scholar
  62. Wang, B., and X. S. Xie, 1997: A model for the boreal summer intraseasonal oscillations. J. Atmos. Sci., 54: 72–86, doi: 10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.CrossRefGoogle Scholar
  63. Wang, B., and X. S. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillation. J. Climate, 11: 2116–2135, doi: 10.1175/1520-0442-11.8.2116.Google Scholar
  64. Wang, B., and S.-S. Lee, 2017: MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. J. Climate, 30: 7933–7952, doi: 10.1175/JCLI-D-16-0873.1.CrossRefGoogle Scholar
  65. Wang, B., P. Webster, K. Kikuchi, et al., 2006: Boreal summer quasi-monthly oscillation in the global tropics. Climate Dyn., 27: 661–675, doi: 10.1007/s00382-006-0163-3.CrossRefGoogle Scholar
  66. Wang, B., S.-S. Lee, D. E. Waliser, et al., 2018: Dynamics-oriented diagnostics for the Madden–Julian Oscillation. J. Climate, 31: 3117–3135, doi: 10.1175/JCLI-D-17-0332.1.Google Scholar
  67. Wang, L., T. Li, E. Maloney, et al., 2017: Fundamental causes of propagating and non-propagating MJOs in MJOTF/GASS models. J. Climate, 30: 3743–3769, doi: 10.1175/JCLI-D-16-0765.1.CrossRefGoogle Scholar
  68. Wang, L., T. Li, and T. Nasuno, 2018: Impact of Rossby and Kelvin wave components on MJO eastward propagation. J. Climate, 31: 6913–6931, doi: 10.1175/JCLI-D-17-0749.1.CrossRefGoogle Scholar
  69. Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12: 1423–1457, doi: 10.1175/1520-0442(1999) 012<1423:TDOCPO>2.0.CO;2.CrossRefGoogle Scholar
  70. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118: 877–926, doi: 10.1002/qj.49711850705.CrossRefGoogle Scholar
  71. Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56: 374–399, doi1: 0.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.CrossRefGoogle Scholar
  72. Wu, M. L. C., S. Schubert, I.-S. Kang, et al., 2002: Forced and free intraseasonal variability over the South Asian monsoon region simulated by 10 AGCMs. J. Climate, 15: 2862–2880, doi: 10.1175/1520-0442(2002)015<2862:FAFIVO>2.0.CO;2.CrossRefGoogle Scholar
  73. Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57: 227–242, doi: 10.2151/jmsj1965.57.3_227.CrossRefGoogle Scholar
  74. Zhang, C. D., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.Google Scholar
  75. Zhang, C. D., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94: 1849–1870, doi: 10.1175/BAMS-D-12-00026.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yanjun Qi
    • 1
    Email author
  • Renhe Zhang
    • 2
  • Xinyao Rong
    • 1
  • Jian Li
    • 1
  • Lun Li
    • 1
  1. 1.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  2. 2.Institute of Atmospheric SciencesFudan UniversityShanghaiChina

Personalised recommendations