Advertisement

Journal of Meteorological Research

, Volume 33, Issue 2, pp 219–235 | Cite as

Evaluation of the WRF-Lake Model over Two Major Freshwater Lakes in China

  • Yuanyuan Ma
  • Yi YangEmail author
  • Chongjian Qiu
  • Chenghai Wang
Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations
  • 16 Downloads

Abstract

This paper evaluates the performance of the Weather Research and Forecasting (WRF) model coupled with a lake scheme over the Lake Poyang and Lake Dongting regions. We choose several cases with different weather characteristics, including winter with/without precipitation and summer with/without precipitation, and conduct a series of experiments (without the lake model, with the default lake model, and with a calibrated lake model that adjusts the water absorption, extinction coefficients, and surface roughness length) for each case. The results show that the performance of the lake model is significantly affected by the weather conditions. For the winter with precipitation cases, the performance of the default lake model is even worse than without the lake model, but the calibrated lake model can obviously reduce the biases of 2-m temperature and dew-point temperature. Although the performance of the default and new calibrated models is intricate for other cases, the new calibrated model has prominent advantages for 2-m dew-point temperature. Moreover, a long-term simulation of five months also shows that the new calibrated coupled lake model performs better than the default one. These imply that the new calibrated coupled lake model is more suitable to be used in studies of the effects of Lake Poyang and Lake Dongting on regional weather and climate.

Key words

atmosphere–lake coupled model Lake Poyang Lake Dongting calibration weather characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the ECMWF for providing the 6-hourly ERA-Interim dataset (https://rda.ucar.edu/datasets/ds627.0/) as the initial and boundary conditions to drive the WRF model. Besides, we also thank the National Meteorological Information Center of China (http://data.cma.cn) for providing the precipitation, relative humidity, temperature, and dew-point temperature observations data.

References

  1. Balsamo, G., R. Salgado, E. Dutra, et al., 2012: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus A, 64, 15829, doi: 10.3402/tellusa.v64i0.15829.Google Scholar
  2. Bullock, O. R. Jr., K. Alapaty, J. A. Herwehe, et al., 2014: An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J. Appl. Meteor. Climatol., 53, 20–33, doi: 10.1175/JAMC-D-13-030.1.CrossRefGoogle Scholar
  3. Deng, B., S. D. Liu, W. Xiao, et al., 2013: Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J. Hydrometeorol., 14, 636–649, doi: 10.1175/JHM-D-12-067.1.CrossRefGoogle Scholar
  4. Dutra, E., V. M. Stepanenko, G. Balsamo, et al., 2010: An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ. Res., 15, 100–112.Google Scholar
  5. Fu, M. N., 2013: Research on the impacts of Poyang Lake on typical weather process and the characteristics of near surface boundary layer. Ph. D. dissertation, Nanjing University of Information Science & Technology, 100 pp. (in Chinese)Google Scholar
  6. Gao, Y., J. S. Fu, J. B. Drake, et al., 2012: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ. Res. Lett., 7, 044025, doi: 10.1088/1748-9326/7/4/044025.Google Scholar
  7. Gu, H. P., X. S. Shen, J. M. Jin, et al., 2014: An application of a 1-D thermal diffusion lake model to Lake Taihu. Acta Meteor. Sinica, 71, 719–730, doi: 10.11676/qxxb2013.051.Google Scholar
  8. Gu, H. P., J. M. Jin, Y. H. Wu, et al., 2015: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129, 471–483, doi: 10.1007/s10584-013-0978-y.CrossRefGoogle Scholar
  9. Gu, H. P., Z. G. Ma, and M. X. Li, 2016: Effect of a large and very shallow lake on local summer precipitation over the Lake Taihu basin in China. J. Geophys. Res. Atmos., 121, 8832–8848, doi: 10.1002/2015JD024098.CrossRefGoogle Scholar
  10. Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the great lakes system on regional greenhouse warming. J. Climate, 25, 7723–7742, doi: 10.1175/JCLI-D-11-00388.1.CrossRefGoogle Scholar
  11. Heikinheimo, M., M. Kangas, T. Tourula, et al., 1999: Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agric. For. Meteor., 98-99, 521–534, doi: 10.1016/S0168-1923(99)00121-5.Google Scholar
  12. Henderson-Sellers, B., 1986: Calculating the surface energy balance for lake and reservoir modeling: A review. Rev. Geophys., 24, 625–649, doi: 10.1029/RG024i003p00625.CrossRefGoogle Scholar
  13. Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  14. Hostetler, S. W., and P. J. Bartlein, 1990: Simulation of lake evaporation with application to modeling lake level variations of Harney–Malheur Lake, Oregon. Water Resour. Res., 26, 2603–2612, doi: 10.1029/WR026i010p02603.Google Scholar
  15. Hostetler, S. W., G. T. Bates, and F. Giorgi, 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res. Atmos., 98, 5045–5057, doi: 10.1029/92JD02843.CrossRefGoogle Scholar
  16. Hostetler, S. W., F. Giorgi, G. T. Bates, et al., 1994: Lake–atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science, 263, 665–668, doi: 10.1126/science.263.5147.665.CrossRefGoogle Scholar
  17. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  18. Klaić, Z. B., and M. Kvakić, 2014: Modeling the impacts of a man-made lake on the meteorological conditions of the surrounding areas. J. Appl. Meteor. Climatol., 53, 1121–1142, doi: 10.1175/JAMC-D-13-0163.1.CrossRefGoogle Scholar
  19. Li, R., J. Jin, S. Y. Wang, et al., 2014: Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon. Climate Dyn., 44, 1583–1594, doi: 10.1007/s00382-014-2294-2.CrossRefGoogle Scholar
  20. Lin, B. Y., and M. X. Li, 1988: Characteristic feature of the lakeland breeze and its effect on precipitation over the Dongtinghu Lake. J. Nanjing Inst. Meteor., 11, 78–88. (in Chinese)Google Scholar
  21. Lofgren, B. M., 1997: Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10, 2847–2858, doi: 10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2.CrossRefGoogle Scholar
  22. Long, Z., W. Perrie, J. Gyakum, et al., 2007: Northern lake impacts on local seasonal climate. J. Hydrometeorol., 8, 881–896, doi: 10.1175/JHM591.1.CrossRefGoogle Scholar
  23. Mallard, M. S., C. G. Nolte, O. R. Bullock, et al., 2014: Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos., 119, 7193–7208, doi: 10.1002/2014JD021785.CrossRefGoogle Scholar
  24. Mallard, M. S., C. G. Nolte, T. L. Spero, et al., 2015: Technical challenges and solutions in representing lakes when using WRF in downscaling applications. Geosci. Model Dev., 8, 1085–1096, doi: 10.5194/gmd-8-1085-2015.CrossRefGoogle Scholar
  25. Martynov, A., L. Sushama, R. Laprise, et al., 2016: Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America. Tellus A, 68, 16226, doi: 10.3402/tellusa.v64i0.16226.Google Scholar
  26. Meng, X. H., Evans, J. P., and M. F. McCabe, 2014: The impact of observed vegetation changes on land–atmosphere feedbacks during drought. J. Hydrometeorol., 15, 759–776, doi: 10.1175/JHM-D-13-0130.1.CrossRefGoogle Scholar
  27. Meng, X. H., S. H. Lyu, T. T. Zhang, et al., 2018: Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environ. Res. Lett., 13, 044028, doi: 10.1088/1748-9326/aab44a.Google Scholar
  28. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.Atmos., 102, 16663–16682, doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  29. Niu, G. Y., Z. L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109, doi: 10.1029/2010JD015139.Google Scholar
  30. Noh, Y., W. Cheon, S. Y. Hong, et al., 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427, doi: 10.1023/A:1022146015946.CrossRefGoogle Scholar
  31. Notaro, M., K. Holman, A. Zarrin, et al., 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789–804, doi: 10.1175/JCLI-D-12-00140.1.CrossRefGoogle Scholar
  32. Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2013: Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503+STR, Boulder, Colorado: NCAR Earth System Laboratory, doi: 10.5065/D6RR1W7MGoogle Scholar
  33. Samuelsson, P., E. Kourzeneva, and D. Mironov, 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113–129.Google Scholar
  34. Schmidlin, T. W., 2005. Lakes, Effects on Climate. Springer, Dordrecht, 444–445, doi: 10.1007/1-4020-3266-8_119.Google Scholar
  35. Scott, R. W., and F. A. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845–863, doi: 10.1016/S0380-1330(96)71006-7.CrossRefGoogle Scholar
  36. Scott, R. W., and F. A. Huff, 1997: Lake Effects on Climatic Conditions in the Great Lakes Basin. ISWS Contract Report CR-617, Illinois State Water Survey, Illinois, 73 pp.Google Scholar
  37. Sills, D. M. L., J. R. Brook, I. Levy, et al., 2011: Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys., 11, 7955–7973, doi: 10.5194/acp-11-7955-2011.CrossRefGoogle Scholar
  38. Stepanenko, V. M., A. Martynov, K. D. Jöhnk, et al., 2013: A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geosci. Model Dev., 6, 1337–1352, doi: 10.5194/gmd-6-1337-2013.CrossRefGoogle Scholar
  39. Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Mod. Earth Syst., 4, M02001, doi: 10.1029/2011MS000072.Google Scholar
  40. Venäläinen, A., M. Frech, M. Heikinheimo, et al., 1999: Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: Implications for regional averaging. Agric. For. Meteor., 9899, 535–546, doi: 10.1016/S0168-1923(99)00100-8.CrossRefGoogle Scholar
  41. Wang, X. F., and Z. J. Liu, 2008: Statistical characteristics of tropical cyclones making landfalls and passing through lakes in China. J. Trop. Meteor., 24, 539–545, doi: 10.3969/j.issn.1004-4965.2008.05.015. (in Chinese)Google Scholar
  42. Xiao, W., S. D. Liu, W. Wang, et al., 2013: Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake. Bound.-Layer Meteor., 148, 479–494, doi: 10.1007/s10546-013-9827-9.CrossRefGoogle Scholar
  43. Xu, L. J., H. Z. Liu, Q. Du, et al., 2016: Evaluation of the WRF-lake model over a highland freshwater lake in Southwest China. J. Geophys. Res. Atmos., 121, 13989–14005, doi: 10.1002/2016JD025396.CrossRefGoogle Scholar
  44. Zhao, X. S., and Y. B. Liu, 2017: Phase transition of surface energy exchange in China’s largest freshwater lake. Agric. For. Meteor., 244245, 98–110, doi: 10.1016/j.agrformet.2017.05.024.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Yuanyuan Ma
    • 1
    • 2
  • Yi Yang
    • 1
    Email author
  • Chongjian Qiu
    • 1
  • Chenghai Wang
    • 1
  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina

Personalised recommendations