Advertisement

Journal of Meteorological Research

, Volume 32, Issue 6, pp 985–1001 | Cite as

Classification and Diurnal Variations of Precipitation Echoes Observed by a C-band Vertically-Pointing Radar in Central Tibetan Plateau during TIPEX-III 2014-IOP

  • Ruoyun Ma
  • Yali LuoEmail author
  • Hui Wang
Article
  • 63 Downloads

Abstract

This study investigates classification and diurnal variations of the precipitation echoes over the central Tibetan Plateau based on the observations collected from a C-band vertically-pointing frequency-modulated continuous-wave (C-FMCW) radar during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) 2014-Intensive Observation Period (2014-IOP). The results show that 51.32% of the vertical profiles have valid echoes with reflectivity >–10 dBZ, and 35.06% of the valid echo profiles produce precipitation at the ground (precipitation profiles); stratiform precipitation with an evident bright-band signature, weak convective precipitation, and strong convective precipitation account for 52.03%, 42.98%, and 4.99% of the precipitation profiles, respectively. About 59.84% of the precipitation occurs in the afternoon to midnight, while 40.16% of the precipitation with weaker intensity is observed in the nocturnal hours and in the morning. Diurnal variation of occurrence frequency of precipitation shows a major peak during 2100–2200 LST (local solar time) with 59.02% being the stratiform precipitation; the secondary peak appears during 1300–1400 LST with 59.71% being the weak convective precipitation; the strong convective precipitation occurs mostly (81.83%) in the afternoon and evening with two peaks over 1200–1300 and 1700–1800 LST, respectively. Starting from approximately 1100 LST, precipitation echoes develop with enhanced vertical air motion, elevated echo top, and increasing radar reflectivity. Intense upward air motion occurs most frequently in 1700–1800 LST with a secondary peak in 1100–1400 LST, while the tops of precipitation echoes and intense upward air motion reach their highest levels during 1600–1800 LST. The atmospheric conditions in the early morning are disadvantageous for convective initiation and development. Around noon, the convective available potential energy (CAPE) increases markedly, convective inhibition (CIN) is generally small, and a super-dry-adiabatic layer is present near the surface (0–400 m). In the early evening, some larger values of CAPE, level of neutral buoyancy, and total precipitable water are present, suggesting more favorable thermodynamic and water vapor conditions.

Key words

TIPEX-III vertically-pointing radar precipitation echoes diurnal variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, P. M., and A. Bemis, 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7, 145–151, doi: 10.1175/1520-0469(1950)007<0145:AQSOTB> 2.0.CO;2.CrossRefGoogle Scholar
  2. Awaka, J., T. Iguchi, and K. Okamoto, 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. 8th URSI Commission F Open Symposium, Aveiro, Portugal, 131–146.Google Scholar
  3. Bhatt, B. C., and K. Nakamura, 2005: Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon. Wea. Rev., 133, 149–165, doi: 10.1175/mwr-2846.1.CrossRefGoogle Scholar
  4. Chang, Y., and X. L. Guo, 2016: Characteristics of convective cloud and precipitation during summertime at Naqu over the Tibetan Plateau. Chinese Sci. Bull., 61, 1706–1720, doi: 10.1360/N972015-01292. (in Chinese)Google Scholar
  5. Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838–851, doi: 10.1175/1520-0469(1995)052 <0838:LTROOT>2.0.CO;2.CrossRefGoogle Scholar
  6. Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180–186, doi: 10.2151/jmsj1923.35a.0_180.CrossRefGoogle Scholar
  7. Flohn, H., 1968: Contributions to a meteorology of the Tibetan Highlands. Atmospheric Science Papers No. 130, Colorado State University, Fort Collins, 120 pp.Google Scholar
  8. Fu, Y. F., and G. S. Liu, 2007: Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J. Appl. Meteor. Climatol., 46, 667–672, doi: 10.1175/JAM2484.1.CrossRefGoogle Scholar
  9. Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, New York, 573 pp.Google Scholar
  10. Houze Jr., R. A., S. A. Rutledge, M. I. Biggerstaff, et al., 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619, doi: 10.1175/1520-0477(1989)070<0608:iodwrd> 2.0.co;2.CrossRefGoogle Scholar
  11. Hsu, H. H., and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30, 2066, doi: 10.1029/2003GL017909.Google Scholar
  12. Koike, T., T. Yasunari, J. Wang, et al., 1999: GAME-Tibet IOP summary report. Proc. 1st International Workshop on GAMETibet, Xi’an, China, 11–13 January, 1–2.Google Scholar
  13. Liu, L. P., J. F. Zheng, Z. Ruan, et al., 2015: Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res., 29, 546–561, doi: 10.1007/s13351-015-4208-6.CrossRefGoogle Scholar
  14. Liu, Y. M., G. X. Wu, J. L. Hong, et al., 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 1183–1195, doi: 10.1007/s00382-012-1335-y.CrossRefGoogle Scholar
  15. Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989, doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.Google Scholar
  16. Luo, Y. L., K. M. Xu, H. Morrison, et al., 2008: Multi-layer Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity experiments. J. Geophys. Res. Atmos., 113, D12208, doi: 10.1029/2007JD009563.CrossRefGoogle Scholar
  17. Luo, Y. L., R. H. Zhang, W. M. Qian, et al., 2011: Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177, doi: 10.1175/2010JCLI4032.1.CrossRefGoogle Scholar
  18. Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353–362.Google Scholar
  19. Qian, Z. A., S. M. Zhang, and F. M. Shan, 1984: Analysis on convective activities over the Tibet Plateau in summer of 1979. The Collected Papers on the Qinghai–Xizang Plateau Meteorological Experiment in 1979 (I). Science Press, Beijing, 243–257. (in Chinese)Google Scholar
  20. Qie, X. S., X. K. Wu, T. Yuan, et al., 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 6612–6626, doi: 10.1175/JCLI-D-14-00076.1.CrossRefGoogle Scholar
  21. Ruan, Z., L. Jin, R. S. Ge, et al., 2015: The C-band FMCW pointing weather radar system and its observation experiment. Acta Meteor. Sinica, 73, 577–592, doi: 10.11676/qxxb2015.039. (in Chinese)Google Scholar
  22. Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295, doi: 10.1175/1520-0477 (1988)069<0278:APTRMM>2.0.CO;2.CrossRefGoogle Scholar
  23. Simpson, J., C. Kummerow, W. K. Tao, et al., 1996: On the tropical rainfall measuring mission (TRMM). Meteor. Atmos. Phys., 60, 19–36, doi: 10.1007/BF01029783.CrossRefGoogle Scholar
  24. Stephens, G. L., D. G. Vane, R. J. Boain, et al., 2002: The Cloud-Sat mission and the A-Train: A new dimension of spacebased observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771–1790, doi: 10.1175/BAMS-83-12-1771.CrossRefGoogle Scholar
  25. Uyeda, H., H. Yamada, J. Horikomi, et al., 2001: Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J. Meteor. Soc. Japan, 79, 463–474, doi: 10.2151/jmsj.79.463.CrossRefGoogle Scholar
  26. Williams, C. R., A. B. White, K. S. Gage, et al., 2007: Vertical structure of precipitation and related microphysics observed by NOAA profilers and TRMM during NAME 2004. J. Climate, 20, 1693–1712, doi: 10.1175/JCLI4102.1.CrossRefGoogle Scholar
  27. Winker, D. M., J. R. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, Hangzhou, China, 21 March, SPIE, 1–12, doi: 10.1117/12.466539.CrossRefGoogle Scholar
  28. Wu, G. X., Y. M. Liu, B. W. Dong, et al., 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dyn., 39, 1169–1181, doi: 10.1007/s00382-012-1334-z.CrossRefGoogle Scholar
  29. Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577–1592, doi: 10.1175/MWR-D-12-00177.1.CrossRefGoogle Scholar
  30. Xu, X. D., and L. S. Chen, 2006: Advances in Tibetan Plateau atmospheric science experiments. J. Appl. Meteor. Sci., 17, 756–772, doi: 10.3969/j.issn.1001-7313.2006.06.013. (in Chinese)Google Scholar
  31. Xu, X. D., M. Y. Zhou, J. Y. Chen, et al., 2002: A comprehensive physical pattern of land–air dynamic and thermal structure on the Qinghai–Xizang Plateau. Sci. China Ser. D Earth Sci., 45, 577–594, doi: 10.3969/j.issn.1674-7313.2002.07.001.CrossRefGoogle Scholar
  32. Zhao, P., X. D. Xu, F. Chen, et al., 2018: The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757–776, doi: 10.1175/BAMS-D-16-0050.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina
  3. 3.Key Laboratory for Cloud Physics and Weather Modification of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations