Advertisement

Journal of Meteorological Research

, Volume 32, Issue 6, pp 923–936 | Cite as

Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China

  • Hong-Li Ren
  • Bo Lu
  • Jianghua Wan
  • Ben Tian
  • Peiqun Zhang
Article
  • 22 Downloads

Abstract

The El Niño–Southern Oscillation (ENSO) reflects anomalous variations in the sea surface temperature (SST) and atmospheric circulation over the tropical central–eastern Pacific. It remarkably impacts on weather and climate worldwide, so monitoring and prediction of ENSO draw intensive research. However, there is not yet a unique standard internationally for identifying the timing, intensity, and type of ENSO events. The National Climate Center of China Meteorological Administration (NCC/CMA) has led the effort to establish a national identification standard of ENSO events, which was officially endorsed by the National Standardization Administration of China and implemented operationally in NCC/CMA in 2017. In this paper, two key aspects of this standard are introduced. First, the Niño3.4 SST anomaly index, which is well-recognized in the international ENSO research community and used operationally in the US, has replaced the previous Niño Z index and been used to identify the start, end, and peak times, and intensity of ENSO events. Second, two new indices—the eastern Pacific ENSO (EP) index and the central Pacific ENSO (CP) index, based on the SST conditions in Niño3 and Niño4 region respectively, are calculated to first determine the ENSO type before monitoring and assessing the impacts of ENSO on China’s climate. With this standard, all historical ENSO events since 1950 are consistently re-identified; their distinct properties are diagnosed and presented; and the impacts of ENSO events under different types on China’s climate are re-assessed. This standard is also employed to validate the intensity, grade, and type of the ENSO events predicted by the NCC/CMA operational ENSO prediction system. The new standard and the thus derived unified set of re-analyzed historical ENSO events and associated information provide a good reference for better monitoring and prediction of future ENSO events.

Key words

El Niño–Southern Oscillation identification standard monitoring prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13351_2018_8078_MOESM1_ESM.pdf (1.4 mb)
Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China

References

  1. Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007, doi: 10.1029/2006JC003798.CrossRefGoogle Scholar
  2. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.CrossRefGoogle Scholar
  3. Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over South China. J. Geophys. Res. Atmos., 116, D13102, doi: 10.1029/2010JD015160.CrossRefGoogle Scholar
  4. Feng, J., L. Wang, W. Chen, et al., 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res. Atmos., 115, D24122, doi: 10.1029/2010JD014761.CrossRefGoogle Scholar
  5. Feng, J., W. Chen, C. Y. Tam, et al., 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 2091–2101, doi: 10.1002/Joc. 2217.CrossRefGoogle Scholar
  6. Fu, Z. B., and J. Fletcher, 1985: Two patterns of equatorial warming associated with El Niño. Chinese Sci. Bull., 30, 1360–1364.Google Scholar
  7. Guo, Y. J., P. M. Zhai, and Y. Q. Ni, 1998: A new index for ENSO monitoring. Quart. J. Appl. Meteor., 9, 169–177. (in Chinese)Google Scholar
  8. Hanley, D. E., M. A. Bourassa, J. J. O’Brien, et al., 2003: A quantitative evaluation of ENSO indices. J. Climate, 16, 1249–1258, doi: 10.1175/1520-0442(2003)16<1249:AQEOEI>2.0. CO;2.CrossRefGoogle Scholar
  9. Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813–829, doi: 10.1175/1520-0493(1981)109 <0813:PSAPAW>2.0.CO;2.CrossRefGoogle Scholar
  10. Huang, B. Y., P. W. Thorne, V. F. Banzon, et al., 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, doi: 10.1175/JCLI-D-16-0836.1.CrossRefGoogle Scholar
  11. Huang, R. H., R. H. Zhang, and Q. Y. Zhang, 2000: The 1997/98 ENSO cycle and its impact on summer climate anomalies in East Asia. Adv. Atmos. Sci., 17, 348–362, doi: 10.1007/s00376-000-0028-3.CrossRefGoogle Scholar
  12. Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.CrossRefGoogle Scholar
  13. Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, doi: 10.1175/2008JCLI2624.1.CrossRefGoogle Scholar
  14. Li, X. Y., and P. M. Zhai, 2000: On indices and indicators of ENSO episodes. Acta Meteor. Sinica, 58, 102–109, doi: 10. 11676/qxxb2000.010. (in Chinese)Google Scholar
  15. Li, X. Y., P. M. Zhai, and F. M. Ren, 2005: Redefining ENSO episodes based on changed climate references. J. Trop. Meteor., 21, 97–103. (in Chinese)Google Scholar
  16. Liu, Y., and H.-L. Ren, 2017: Improving ENSO prediction in CFSv2 with an analogue-based correction method. Int. J. Climatol., 37, 5035–5046, doi: 10.1002/joc.5142.CrossRefGoogle Scholar
  17. McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi: 10. 1029/2011GL048275.CrossRefGoogle Scholar
  18. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384, doi: 10.1175/1520-0493(1982)110<0354:VITS ST>2.0.CO;2.CrossRefGoogle Scholar
  19. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  20. Ren, H.-L., and F. F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010 GL046031.CrossRefGoogle Scholar
  21. Ren, H.-L., and F. F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523, doi: 10. 1175/JCLI-D-12-00601.1.CrossRefGoogle Scholar
  22. Ren, H.-L., F. F. Jin, M. F. Stuecker, et al., 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835–842, doi: 10.2151/jmsj. 2013–608.CrossRefGoogle Scholar
  23. Ren, H.-L., F. F. Jin, B. Tian, et al., 2016a: Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43, 10,973–10,979, doi: 10.1002/2016GL071015.CrossRefGoogle Scholar
  24. Ren, H.-L., Y. Liu, J. Q. Zuo, et al., 2016b: The new generation of ENSO prediction system in Beijing Climate Center and its prediction for the 2014/16 super El Niño event. Meteor. Mon., 42, 521–531, doi: 10.7519/j.issn.1000-0526.2016.05.001. (in Chinese)Google Scholar
  25. Ren, H.-L., C. H. Sun, F. M. Ren, et al., 2017a: GB/T 33666–201. Identification method for El Niño/La Niña events. Standards Press of China, Beijing, 1–6. (in Chinese)Google Scholar
  26. Ren, H.-L., F. F. Jin, L. C. Song, et al., 2017b: Prediction of primary climate variability modes at the Beijing Climate Center. J. Meteor. Res., 31, 204–223, doi: 10.1007/s13351-017-6097-3.CrossRefGoogle Scholar
  27. Ren, H.-L., A. A. Scaife, N. Dunstone, et al., 2018a: Seasonal predictability of winter ENSO types in operational dynamical model predictions. Climate Dyn., doi: 10.1007/s00382-018-4366-1.CrossRefGoogle Scholar
  28. Ren, H.-L., J. Q. Zuo, and Y. Deng, 2018b: Statistical predictability of Niño indices for two types of ENSO. Climate Dyn., doi: 10.1007/s00382-018-4453-3.CrossRefGoogle Scholar
  29. Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, doi: 10.1175/1520-0442(2002)015<1609: AIISAS>2.0.CO;2.CrossRefGoogle Scholar
  30. Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 2864–2889, doi: 10.1002/2013JD020316.CrossRefGoogle Scholar
  31. Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 2771–2778, doi: 10.1175/1520-0477(1997)078 <2771:TDOENO>2.0.CO;2.CrossRefGoogle Scholar
  32. Trenberth, K. E., and D. P. Stepaniak, 2001: LETTERS: Indices of El Niño evolution. J. Climate, 14, 1697–1701, doi: 10. 1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.CrossRefGoogle Scholar
  33. Trenberth, K. E., G. W. Branstator, D. Karoly, et al., 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans, 103, 14291–14324, doi: 10. 1029/97JC01444.CrossRefGoogle Scholar
  34. Wang, Q., S. L. Li, J. J. Fu, et al., 2012: On the formation of anomalous summer precipitation in the years of 2010 and 1998: A comparison of the El Niño’s impact between Modoki and typical El Niño cases. Acta Meteor. Sinica, 70, 1207–1222, doi: 10.11676/qxxb2012.102. (in Chinese)Google Scholar
  35. Wang, S. P., 1991: The criteria, classification and characteristics of El Niño episodes. Acta Oceanol. Sinica, 13, 611–620. (in Chinese)Google Scholar
  36. Weng, H. Y., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129, doi: 10. 1007/s00382-007-0234-0.CrossRefGoogle Scholar
  37. Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 7702–7722, doi: 10.1175/JCLI-D-11-00576.1.CrossRefGoogle Scholar
  38. Yuan, Y., and H. M. Yan, 2013: Different types of La Niña events and different responses of the tropical atmosphere. Chinese Sci. Bull., 58, 406–415.CrossRefGoogle Scholar
  39. Yuan, Y., H. Yang, and C. Y. Li, 2012: Study of El Niño events of different types and their potential impact on the following summer precipitation in China. Acta Meteor. Sinica, 70, 467–478, doi: 10.11676/qxxb2012.039. (in Chinese)Google Scholar
  40. Zhang, W. J., F. F. Jin, J. P. Li, et al., 2011: Contrasting impacts of two types of El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563–569, doi: 10. 2151/jmsj.2011-510.CrossRefGoogle Scholar
  41. Zhang, W. J., F. F. Jin, H.-L. Ren, et al., 2012: Differences in teleconnection over North Pacific and the rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteor. Soc. Japan, 90, 535–552, doi: 10.2151/jmsj.2012-407.CrossRefGoogle Scholar
  42. Zhang, W. J., L. Wang, B. Q. Xiang, et al., 2015: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 1351–1366, doi: 10.1007/s00382-014-2155-z.CrossRefGoogle Scholar
  43. Zhang, W. J., F. F. Jin, M. F. Stuecker, et al., 2016: Unraveling El Niño’s impact on the East Asian Monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11,375–11,382, doi: 10.1002/2016GL071190.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong-Li Ren
    • 1
    • 2
  • Bo Lu
    • 1
  • Jianghua Wan
    • 1
  • Ben Tian
    • 1
  • Peiqun Zhang
    • 1
  1. 1.Laboratory for Climate Studies &China Meteorological Administration–Nanjing University Joint Laboratory for Climate Prediction Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.Department of Atmospheric Science, School of Environmental StudiesChina University of GeoscienceWuhanChina

Personalised recommendations